
Delegation of Obligations

Andreas Schaad
University of York

Department of Computer Science
Y010 5DD, York
United Kingdom

Email: andreas@cs.york.ac.uk

Jonathan D. Moffett
University of York

Department of Computer Science
Y010 5DD, York
United Kingdom

Email: jdm@cs.york.ac.uk

Abstract

Obligation policies are one main means of exercising
control within an organisation. They specify the actions
that some subject has to perform. The authority over these
actions needs to be specified in authorisation policies.
Current policy notations provide us with the needed
structure to represent authorisations and obligations as
policy objects for distributed systems management. They
support the delegation of authorisations but not of
obligations. Yet, there is a strong relationship between
the two policy types and the delegation of obligations
needs to be supported as well, requiring the introduction
of a new type of policy which we call a "review".

This paper investigates the general principles
underlying the delegation of policy objects, putting
specific emphasis on the delegation of obligations. The
Alloy specification language is used to specify and
illustrate these principles. The main issues that will be
discussed are: the balance between authorisation and
obligation policies; the source of obligations and reasons
for their delegation; the need for review policies to help
control the delegation of obligations.

1 Introduction

Organisations have to achieve control over their
activities. They do this by specifying policies expressing
these control requirements. Policies range from abstract
high-level policies down to refined policies which are
expressed as rules defining a choice in the behaviour of
the organisation. Obligations are one specific type of
policy. They regulate which activities have to be
performed by whom and when. In order to perform these
activities and eventually discharge the obligation, the
obligation holder needs sufficient authority which, in
automated systems, is expressed in a set of access rights.
Together with further information such as specific targets
or constraints these form authorisation policies which
represent a second specific type of policy.

The various activities that are performed within an
organisation can be categorised according to their degree
of similarity, regularity and repeatability. The higher this
degree the more can these activities be regulated by
policies. In this case, subjects are released from making
decisions on their own and merely execute what is defined
in those policies. The lower this degree, the more
individual decisions have to be made which cannot be
regulated by policies. The ultimate aim is to establish an
organisation where a set of general policies regulates the
core organisational activities at the same time leaving
sufficient room for required individual decisions [1]. One
mechanism which is employed to contribute to this aim is
to allow for the delegation of policies between
individuals. The Ponder policy framework [2] provides
support for the delegation of authorisation policies but
does not take the delegation of obligations into
consideration. However, the delegation of obligations has
been identified as a recurring phenomenon in distributed
systems [3] that needs to be addressed.

2 Outline

Having given an initial introduction and motivation for
the delegation of policies we introduce the Alloy
specification language that will be used to model the
delegation of obligations (Section 3). We show how the
very basic properties of a delegation operation can be
modeled and analysed in terms of Alloy and continue to
further refine the initial specification to support the
delegation of authorisation and obligation policy objects
(Section 4). The important property of obligations
requiring sufficient authority to be discharged is then
specified (Section 5). We continue to concentrate on the
source of obligations and identify a set of reasons for their
delegation (Section 6). Review policies are introduced to
control the delegation of obligations (Section 7). The
paper finishes with a discussion on related work (Section
8); the properties of the new Alloy language that has been
published recently (Section 9); and a summary and
conclusion (Section 10).

IEEE Policies for Distributed Systems and Networks (POLICY 2002), to be held June 5-7, 2002, Monterey, CA

3 The Alloy specification language

The Alloy language is designed for the specification of
object models through graphical and textual structures [4].
It has a simple ASCII textual notation of which a subset
can be expressed graphically. It is a state-based language
and invariants constrain the relationships between objects.
Alloy is supported by the Alloy Constraint Analyzer [5]
which allows us to analyse specifications in order to detect
over- and under-constraints. Alloy's syntax is based on the
Z language [6] and integrates further concepts that are
used in other object modeling notations [7].

Each state component is either a set, a binary relation,
or an indexed relation. For sets, there are the usual set-
theoretic operators (shown here in ASCII form):

s + t union of s and t
s & t intersection of s and t

There are no set constants in Alloy. Instead, we have:

some s s is non-empty
no s s is empty
one s s has exactly one element

Elementary formulas in Alloy are made by comparing
sets (which can be singletons):

s = t equality: s and t have the same elements
s in t subset: every element of s is an element of t

Alloy has standard quantifiers. If a variable x is part of
a formula F we can write:

all x:s|F F is true for every value of x in the set s
some x:s|F F is true for some value of x in the set s

Standard logical operators are provided:

&& and
|| or

An important operator in Alloy is the relational image
'.' [4]. The expression s.r denotes the set of objects that
the set s maps to in the relation r. This kind of expression
is often called a "navigation expression" because we
navigate from s along a relation r. Applying the image
operator again yields a longer navigation. Suppose, for
example, that we have the sets Subject, Obligation,
and Action denoting the components of a simple
managed system. The relation holds maps the sets of
subjects to obligations. Then for a single subject s1, the
relation s1.holds gives us the set of obligations that the
subject holds. Introducing a further relation requires,
which maps an obligation with required actions, we can
now write s1.holds.requires to denote the set of
all actions a subject requires to discharge his obligations.

Other relational operators include the transpose of a
relation (~) and its transitive closure (+).

4 Delegation of policy objects

Policy objects represent policies in an automated
system. Within frameworks such as the Ponder language
two such objects are authorisation and obligation policies.
They specify what subjects can and have to do.

One form of decentralising control in organisations is
to allow for the delegation of these policy objects from
one subject to another. Technically, delegation is the
activity of creating a new relation between a subject and
an existing policy object. We believe that there are some
general principles underlying the delegation of the two
types of policies. However, a distinction has to be made
between the specific delegation properties of authorisation
and obligation policies.

4.1 General delegation properties

The initial general model of policy objects that we will
use for specifying and analysing delegation properties is
as follows:

model policy_objects{
domain{PolicyObject, Subject}
state{
holds : Subject -> PolicyObject}

}

The domain paragraph describes the type of objects we
make use of. The state paragraph then describes the
relations between the objects. Where it is not specified the
cardinality of a relation is automatically assumed to be
zero or more. Otherwise, the plus sign and the
exclamation mark are used to indicate that, for example, a
subject holds one or more (+) policy objects or that a
policy object can only be held by exactly one (!) subject.

The delegation of a policy object is informally defined
as an operation, where one subject delegates a policy that
he holds to another subject, who holds the policy after the
operation completes.

We now want to specify an operation (op
delegation_1) describing the change of state for a
delegation activity. As in other sequential specification
languages, the before state is left unmarked while the after
state is indicated by the primed symbol (’). The argument
list of the operation defines the variables the operation is
carried out upon.

This operation says that, before the operation, the
delegating subject subj1 must hold the policy object to
be delegated (pol_obj in subj1.holds). It is
silent about whether subj1 still holds the policy object
after the operation. However, after the operation subj2
must hold the policy object (pol_obj in
subj2.holds’).

op delegation_1(subj1,subj2:Subject!,
pol_obj:PolicyObject!){

//Subjects are distinct
subj1 != subj2

//Maintain other relationships
all subjs : Subject – (subj1 + subj2) |
subjs.holds’ = subjs.holds

all objs: PolicyObject – pol_obj |
objs.~holds’ = objs.~holds

//Delegate policy object
pol_obj in subj1.holds
pol_obj in subj2.holds’

}

We can now use the analysis facilities of Alloy to find
a model that satisfies our formulae within a defined search
scope (e.g. for up to 2 subjects and 2 policy objects). Such
a graphical representation helps us in detecting any under-
or over-constraints or other undesired model properties.
Based on the above specification, we prompt the Alloy
constraint analyser to generate the following two models
with respect to the execution of the delegation operation:

Figure 1: Basic Delegation Model 1

Figure 2: Basic Delegation Model 2

These examples have been generated arbitrarily by
Alloy, which also determines the labeling (e.g. reversal of
S0 and S1 between figures 1 and 2). Changing the search
scope might result in different models. Only the
constraints given in the object model and the operation
define what a well-formed state should look like and how
the before and after state of an operation should relate to
each other.

It can be observed in figure 1 (and from further output
given by the constraint analyser) that the policy object P0
was delegated from subject S1 to subject S0. S0 did not

previously hold P0, while S1 did. After the delegation S0
now holds P0 and S1 does not anymore. Similarly, it can
be seen in figure 2 that P1 was delegated from S1 to S0.
The difference from the delegation in figure 1 is however,
that the policy object remains with the delegating subject.

Our specification shows a basic structure underlying
the delegation of policy objects. However, a general
delegation model will not suit all types of policies. The
reasons for this and the properties that have to be defined
for the delegation of specific policy objects are discussed
now.

4.2 Partitioning policy objects

We show in this section why a general delegation
model is insufficient, because different constraints apply
to the delegation of authorisations and obligations. Our
initial specification has to be extended so that we can talk
about authorisations and obligations as specific policy
objects. This is a similar viewpoint to that expressed in the
Ponder framework.

In order to treat authorisations and obligations
separately, the Alloy mechanism of partitioning the
PolicyObject domain into Authorisation and
Obligation domains is used. Accordingly, the
following formula is added to the state paragraph of our
initial specification:

partition Authorisation,
Obligation: PolicyObject

This expresses the fact that the sets of authorisation
and obligation objects are mutually disjoint and that their
union will result in the set of policy objects.

4.2.1 Delegating authorisations

When authority is delegated between two subjects the
general intent of the delegating subject is to give the
receiving subject the power to act on its behalf.

The delegating subject must already hold the authority
object and also hold another piece of authority which
allows him to initiate the delegation process. After the
delegation took place the delegator still holds the
authority object, while the receiving subject now also
holds it. Subsequently, we allow multiple subjects to hold
the same authorisation object. This could lead to a
situation where a subject already holds an authorisation
that it is supposed to receive in a delegation. This makes
sense as delegated authority can also be revoked,
however, the semantics to maintain a history of delegated
authorisations is outside the scope of this paper.

Considering the direction of a delegation of authority
we usually think in terms of a downwards delegation
along a management chain. However, delegation can also

be directed up that chain. It is not necessarily the case that
the authority of a subordinate is a subset of that of his
superior. Often specific authority is held by subjects and
they can delegate this to their superior. Similarly, subjects
can delegate authority to other peer subjects along a
horizontal scale.

4.2.2 Delegating obligations

When an obligation is delegated between two subjects
the general intent of the delegating subject is to make the
receiving subject perform a set of activities. The reasons
for this vary and we discuss some examples in section 6.2.

In general, an obligation must be held by a single
subject in order to ensure that tasks are only carried out
once. Although there are some exceptions in real life, we
are enforcing this constraint in this paper. This implies
that after the delegation took place the delegating subject
no longer holds the obligation policy object. We will later
see that this gap needs to be filled by the creation of a new
obligation (Section 7.1).

Similar to the delegation of authority we can observe
that obligations are usually delegated downwards along a
management chain but in certain cases (e.g. illness of an
employee) an obligation might be delegated from a
subordinate to his superior. Likewise, a horizontal
delegation of an obligation can occur.

4.3 Extending the delegation operation

We now specify a delegation operation that specifies
different results for authorisations and obligations; an
authorisation policy object remains held by the delegating
subject after the operation, whereas an obligation does
not. The following Alloy operation captures this
requirement:

op delegation_2 (subject1, subject2:
Subject!,pol_obj: PolicyObject!){

//Maintain relationships
all policies : PolicyObject - pol_obj |

policies.~holds' = policies.~holds

//Delegate Authority
pol_obj in Authority ->
(pol_obj in subject1.holds &&
pol_obj in subject1.holds' &&
pol_obj in subject2.holds')

//Delegate Obligation
pol_obj in Obligation -> (

pol_obj in subject1.holds &&
pol_obj !in subject1.holds' &&
pol_obj in subject2.holds')

}

This operation expresses that depending on what kind
of policy object is delegated, the constraints on the before
and after state are different. In case of delegating authority
(pol_obj in Authority ->...), the expression
pol_obj in subject1.holds says that the policy
object must be assigned to the delegating subject in the
before state, while pol_obj in subject1.holds'
expresses that this initial relationship is also maintained in
the after state. In case of delegating an obligation
(pol_obj in Obligation ->...), the delegating
subject will not hold the policy object anymore as
indicated by the exclamation mark in the expression
pol_obj !in subject1.holds'.

The analysis of the specification illustrates the different
behaviour of the operation with respect to a specific
policy object. Figure 3 shows that after the delegation of
an authorisation policy an extra relationship has been
created, whereas in figure 4 the delegation of an
obligation results in the transfer of the policy object.

Figure 3: Delegation of an Authorisation

Figure 4: Delegation of an Obligation

5 Obligations require authority

Obligation policies need a set of corresponding
authorisations such that the required actions can be
performed and the obligation can be discharged [8]. More
specifically, the action specified in an obligation for a
subject and possibly target must match an action in an
authorisation with the same parameters. This is an obvious
but important relation between obligations and
authorisations, specifically within systems that allow for
the delegation of authorisations and obligations [9], [10].

Figure 5: Unbalanced Model

If an authorisation is delegated from a subject s1 to
another subject s2 without a corresponding obligation on
s2’s side, then the principle of least privilege is violated.

If, on the other hand, an obligation is delegated by s1
without the needed authorisations, then s2 will not be
able to discharge the obligation, subsequently reducing the
operational efficiency of the system, but possibly even
making s2 liable for the failed discharge.

As a result, we have to specify a set of constraints on
the relationship between an obligation, an authorisation,
and their associated actions. These constraints aim at
establishing the balance of an obligation and authorisation
configuration set. We will now continue to use the Alloy
specification language to express and analyse this
requirement and its implications, within the so far
established model that allows for the delegation of
authorisations and obligations.

First we have to extend the initial model to include
actions. We do this by adding the following two relations
to our state paragraph:

requires: Obligation -> Action+
permits: Authorisation -> Action+

These relations state that an authorisation consists of
one or more actions and that an obligation requires one or
more actions. If we now generated a model according to
this so far unconstrained specification we can easily see
the problems described earlier on.

Figure 5 shows that S2 will not be able to discharge his
obligation P0 as one of the required actions A4 is not
associated to any authorisation he holds. On the other
hand S3 has more authority then he needs (A0) to
discharge his obligations P4 and P0. There are now
several ways to achieve the desired balance between
obligations and authorisations, expressed in the following
three invariants:

• Obligation-Centric
We require that the set of required actions a subject
holds through its obligations must be a subset of all the

permitted actions which are part of the authorisations
the subject holds. This can be expressed in the
following invariant:

inv obligation_centric {
all s1: Subject |
some s1.holds.requires ->

s1.holds.requires in
s1.holds.permits}

While this invariant ensures that a subject can always
discharge its obligations, it will still allow a subject to
have more authority then it perhaps needs. We thus
specify the next invariant.

• Authorisation-Centric
We require that the set of permitted actions a subject
holds through its authorisations must be a subset of all
the required actions which are part of the obligations
the subject holds. This can be expressed in the
following invariant:

inv authorisation_centric{
all s1: Subject |
some s1.holds.permits ->

s1.holds.permits in
s1.holds.requires}

This invariant is just the dual to the previous invariant
and will ensure that there is no non-required authority.

• Well-balanced
We might want to additionally require the model to be
well-balanced, such that for each obligation there
exists exactly one matching authorisation.

inv well_balanced {
all o: Obligation |
one a: Authorisation |

o.requires = a.permits &&
one (o.~holds & a.~holds)}

For reasons of space, we just generate a model that
satisfies all three constraints (Figure 6).

Figure 6: Well-balanced model

6 Organisational obligations

6.1 The source of obligations

Obligations are derived from an organisation’s set of
top-level goals and as such are driven by more general
legal, moral and most importantly economical goals.

Their source is often identical to the source of
authority [11], as both types of policy are usually
specified together. Thus, high-level obligations are
created by the stakeholders (e.g. shareholders) of an
organisation and are initially placed upon the entity
controlling the organisation (e.g. board of directors).
From there obligations are refined and delegated down
through the organisational hierarchy together with the
required authority.

Most types of organisations have identified and
implemented a set of core business processes to achieve
their goals, and obligations and authority are usually
expressed in the job descriptions of the human
participants of a process. Even in the case of automated
systems used to support the main business processes of
an organisation, any obligations should trace back to
human managers. For example, the obligation of the
server to make a nightly backup is actually the
obligation of the network administrator. Equally, the
obligation of a network switch to provide quality of
service (QoS) functions is actually part of the more
general obligation of a human manager to fulfill his QoS
contracts.

6.2 Delegating obligations

We saw that one reason for delegating obligations is
the refinement of higher-level obligations into chunks
that are manageable and can be eventually discharged by
a subject. However, there are further organisational
motives behind the delegation of an obligation. Some
examples of such motives are:

1. Lack of resources
A subject has not the resources sufficient to
discharge an obligation it holds. Examples for such
resources could be a lack of time, equipment, or
missing domain membership

2. Competence
The subject is not sufficiently competent to perform
an activity. It might hold the obligation, but will
have to delegate parts or all of it in order to
discharge it.

3. Specialisation
The subject might be sufficiently competent to
discharge an obligation but it is more efficient to
delegate parts or all of the obligation to subjects in
specialist positions (e.g. discharge takes less time).

4. Organisational policies
Specific organisational policies such as separation
of duty or dual control rules require the delegation
of an obligation. In the first case, the obligation
might have to be delegated because the subject
already holds another obligation, in the second case,
the obligation might have to be delegated because it
can only be discharged by two subjects.

These examples show that we can have either
organisational (1-3) or policy-based (4) factors which
cause the delegation of an obligation.

7 Organisational control through review

The continual creation, delegation and discharge of
obligations causes unstable situations within an
organisation. Unstable means that we are often uncertain
about who currently holds an obligation, whether
somebody has discharged his obligations, the effect of
such a discharge and who has to make sure that some
tasks are performed in the end.

Figure 7: Creating a Review obligation

For this reason it is necessary to hold to account
persons who delegate obligations. In order for them to be
able to give an account of the obligation that they have
delegated, they must review it. This is done by creating a
review policy, described below, corresponding to the
delegated obligation.

The activity of review describes a post-hoc control that
aims at controlling delegated obligations. A review policy
is created as the result of specifically delegating an
obligation and is a specific type of obligation itself
(Figure 8).

Figure 8: Policy Object Types

We can represent this fact within the so far established
model by declaring a review to be a subset of obligation in
the expression Review:Obligation. This is in line
with the view expressed in the Ponder object meta-model
and if required, any further specific obligation types found
could be integrated by partitioning the model as shown in
the previous section (4.2). However, note that Alloy does
not talk about inheritance as such.

What is the relationship between the actions in an
obligation policy that has been delegated, and the actions
in the review policy that is created in its place? This is
application-dependent; we assume in this context that
there is a relation reviewed_by: Action! ->
Action!, which defines the review action for each
obligation action. We also need to define a relation
target: Review! -> Obligation! to express
the target of a review policy.

7.1 Expressing review policies in Alloy

We now look at the effects of introducing review
policies in terms of our current delegation of obligation
operations. We have seen how a policy object is generally
delegated between two subjects and that there is a
difference between delegating authorisations and
obligations, namely that obligations must be assigned to a
unique subject. When an obligation is delegated, the
delegating subject loses its assignment to the obligation,
but a new review obligation policy object is created and
assigned to him.

This can be captured by the adding the following
statements (bold) to our current delegation operation
(Section 4.3). We declare one new review object to be
created (a_review: Review'!) and assign this to the
delegating subject after the delegation

op review_delegation_2
(subject1,subject2:Subject!,
pol_obj: PolicyObject!,
a_review: Review'!){

//review object doesn’t initially exist
no review1 & PolicyObject.

//Maintain relationships and
//Delegate Authority

...(see earlier specifications)

//Delegate Obligation
pol_obj in Obligation ->
pol_obj in subject1.holds &&
pol_obj in subject2.holds' &&
pol_obj !in subject1.holds' &&
a_review in subject1.holds'
...

}

The effects of this operation can now be observed in
figure 7 and we can see how a new review obligation P1
was created for the delegating subject S1.

ObligationAuthorisation

PolicyObject

Review

Figure 9: Example of a specific delegation

7.2 Review policies in automated systems

We said that a review policy is the obligation of a
subject to investigate the state of affairs of an obligation it
delegated to another subject. In other words, review is an
obligation on an obligation where the required actions
provide the application specific information on how to
perform the review. Let us illustrate this in the following
example, where we used Alloy to create a delegation
between two specific subjects, at the same time supporting
this operation through the declaration of Ponder-style
obligation policy instances.

We can imagine an obligation for Andreas to prepare
the quarterly sales report to look like:

Obligation Report_Sales_4th:

on before 01/05/01;
held by Andreas;
target Sales_Database;
requires access_report_generator and

access_sales_DB;

This says that Andreas must prepare the report by
performing the required actions on the sales database.
Current business requires Andreas to delegate this task to
Jonathan. In his role as the delegator, Andreas has to
review that Jonathan carried this task out satisfactorily
before the deadline. The actions that need to be carried
out are application-dependent, and are defined in the

reviewed_by relation. The first column represents the
obligation actions and the second the review actions.

reviewed_by:

access_sales_DB | check_logfile
access_report_generator | view_report

From this information a review obligation can be
created:

Review Report Sales 4th:

on before 01/05/01;
held by Andreas;
target Report_Sales_4th;
requires check_logfile and

view_report;

Andreas can now discharge his review obligation by
looking at the database log file for access by Jonathan and
by viewing the generated report file.

We can now observe in figure 9, how Andreas
delegates his obligation to Jonathan, while at the same
time a new review obligation with the name
Review_Report_Sales_4th’ is created for him as
a result of this delegation. We can further observe how the
two actions required by the obligation are related to the
two review actions.

With respect to the authorisation policies and the
balance between them and obligations, we can make the
following observations for review policies. The creation
of a review needs to be supported by the creation of a
matching authorisation policy, allowing the reviewer to
perform the demanded actions. This implies that an
obligation cannot simply be delegated but that it must
belong to a set of obligations for which the relevant
review activities have been identified earlier.

Technically, the delegation of a review is performed
just like the delegation of an ordinary obligation with the
result that a new review policy is created to review the
review of an obligation. We have not investigated the
feasibility of this yet, but there are some obvious
requirements such the absence of cycles in such a
delegation chain.

8 Related work

8.1 Delegation of obligations in Ponder

Ponder [2], [12] is a declarative, object-oriented
language for the specification of security and management
policies in networks and distributed systems. Ponder
policies relate to system objects and control the activities
between them through authorisation; obligation; refrain;
and delegation policies within a defined set of constraints.
Additional constructs such as groups, roles, relationships
and management structures further facilitate system
management.

Ponder specifies that when the delegate() method is
executed a separate authorisation policy is created with
the grantee as the subject. Within the context of our Alloy
specification we assumed that one authorisation can be
held by multiple subjects (Section 4.2).

While Ponder explicitly supports the authority to
delegate authorisation policies, it supports neither the
obligation to delegate authorisation policies nor the
delegation of obligations. Let us explain this in the
following example with subject A delegating print
(action) report (object) to subject B. This needs the
following policies (using a very compressed version of the
Ponder syntax), where the roman numbers represent the
relevant entry in the matrix (Figure 10):

I. A policy which authorizes A (subject) to create an
authorisation policy for B to print report (B is
grantee). This is a Ponder delegation policy (P0) and
must refer to an authorization policy P1 (see II.)
which exists when the delegate method is executed:

P0: deleg P1, A, B, report, print

II. An authorisation policy P1 for A to print
report:

P1: auth+ A, report, print

III. An obligation policy to perform the delegation of
authority. There is no specific policy of this kind
defined in Ponder. It would be similar to a deleg
policy in referring to the pre-existing auth+ policy
P1.

IV. A policy which authorizes A (subject) to create an
obligation policy for B to print report (B is
grantee). This is not defined by Ponder and must refer
to an obligation policy P2 (see V. below) which
exists when the delegate method is executed on it.

V. An obligation policy P2 for A to print report:

P2: oblig A, report, print

VI. An obligation policy to perform the delegation of
obligation. There is no specific policy of this kind
defined in Ponder. It would be similar to a deleg
policy in referring to the pre-existing oblig policy
P2.

If any of the above policies are missing, delegation will
not take place. The extent to which these are supported
by Ponder is summarized in figure 10. We have not
investigated the practicality of writing "raw" Ponder and
OCL to achieve the effect of items III, IV and VI

Delegate Authority Delegate Obligation

I deleg IV not explicitly
supported

II auth+ V oblig

III not explicitly
supported

VI not explicitly
supported

Figure 10: Ponder Coverage Matrix

While Ponder does not explicitly support the authority
to delegate obligations, or the obligation to delegate
authority or obligations, its flexible object-oriented design
and policy object meta-model could support these, and the
further integration of review controls.

8.2 Further related work

The delegation of obligations within distributed
systems is further discussed in [3]. A distinction is made
between the transfer of an obligation; sharing and splitting

an obligation; and outsourcing an obligation. Only the
outsourcing of an obligation can be considered as a
delegation within our context while the other three
activities refer to general obligation management that do
not create a chain of delegated obligations. We
specifically ruled out the sharing of an obligation. The
splitting of obligations could be represented in our
approach by a re-assignment of the relevant actions.

The delegation of obligations and responsibility has
also been described in the context of the ORDIT
methodology [13, 14]. A distinction is made between
consequential and causal responsibility. Consequential
responsibility is a ternary relationship between two agents
and a state of affairs, and causal responsibility is a binary
relation between an agent and an event or a state of
affairs. While an agent is responsible for something, an
obligation expresses that he has to (not) do something. A
binding between an obligation and a responsibility is
created through a state of affairs they are associated with.
The obligation maintains or changes the state of affairs for
which the responsibility is held. Obligations can be
delegated and the new obligation holder becomes
responsible to the original obligation holder for
discharging the obligation. The view that there is always
an ultimately responsible principal is consistent with the
observations made in [9] and the responsibility principle
established in [10].

9 The new Alloy language specification

Shortly after this paper had been written, a completely
revised version of the Alloy language has been presented
[15]. This addresses most of the deficiencies and
drawbacks of the language as it was presented in this
context and discussed elsewhere [16]. Old Alloy
specifications cannot be directly analysed by the new
constraint analyzer anymore, however, only minor
changes are needed to translate old Alloy specifications
into the current version. The most significant changes in
the new Alloy language and its analysis facilities include
[17]:

• Structuring mechanism for incremental extension.
• Support for modularisation of specifications.
• No explicitly built-in notion of state invariants and

operations; instead the possibility of sequential
composition of operations and modeling arbitrary
sequences of states.

• Support for libraries of polymorphic datatypes such as
lists, sequences or trees.

• Support for n-ary relations.
• Support for cardinality constraints and basic integer

operations

We have already re-specified the results of this paper
and further applied the sequential composition of states
technique introduced in [17]. This will allow us in our
planned future work to investigate the effects of
generating chains of delegated obligations and their
discharge within a defined sequence of states.

10 Summary and conclusion

In the course of this paper we have discussed the
general principles underlying the delegation of policy
objects with a special emphasis on the delegation of
obligations and authorisations. Using the Alloy
lightweight formalism helped to enhance the clarity of this
work. We observed that obligations require sufficient
authority and presented alternative constraints to achieve
the appropriate balance between them. We further showed
that the source of an obligation is identical to that of
authority and that both policies are refined and propagate
together in an organisation. We also observed that the
delegation of obligations can result in uncertainty about
whether they are discharged. The organisational control
principle of review is a means of providing accountability
for obligations. We therefore introduced review polices
which oblige subjects to perform appropriate review
actions for delegated obligations.

We have discussed the relationship of the Ponder
policy language to our work, and showed that it does not
provide explicit support for the delegation of obligations,
or for the obligation to delegate authorisation or
obligation policies. However, its flexible object-oriented
design and policy object meta-model could support these,
and the further integration of review controls.

Our future work will concentrate on the extension of
the work presented here, specifically taking into account
further control principles such as Supervision and meta-
policies like the Separation of Duties. By integrating these
in a common framework we will be able to investigate
possible relationships between control principles.

11 Acknowledgements

The UK Engineering and Physical Sciences Research
Council has provided funding for Andreas Schaad under
EPSRC Scholarship number 99311141.

Daniel Jackson and Mandana Vaziri at the Software
Design Group, MIT have given valuable comments
considering technical issues of the Alloy language.

References

[1] Woehe, G. and U. Doering, Einfuehrung in die
Allgemeine Betriebswirtschaftslehre 1996,
Muenchen: Verlag Franz Vahlen

.
[2] Damianou, N., et al. The Ponder Policy

Specification Language. in Policies for Distributed
Systems and Networks. 2001. Bristol: Springer
Lecture Notes in Computer Science.

[3] Cole, J., et al. Author Obliged to Submit Paper
before 4th of July: Policies in an Enterprise
Specification. in Policies for Distributed Systems
and Networks. 2001. Bristol, UK: Springer Lecture
Notes.

[4] Jackson, D., Alloy: A Leightweight Object
Modelling Notation. 2000, MIT Laboratory for
Computer Science: Cambridge, MA.

[5] Jackson, D., I. Schechter, and I. Shlyakhter. Alcoa:
the Alloy Constraint Analyzer. in Proc. International
Conference on Software Engineering. 2000.
Limerick, Ireland.

[6] Spivey, M., The Z Notation: A Reference Manual.
Prentice Hall International Series in Computer
Science. 1989: Prentice Hall.

[7] Warmer, J. and A. Kleppe, The Object Constraint
Language: Precise modeling with UML. 1998:
Addison Wesley.

[8] Moffett, J. and M. Sloman, Policy Conflict Analysis
in Distributed System Management. Ablex
Publishing Journal of Organisational Computing,
1994. 4(1): p. 1-22.

[9] Mullins, L., Management and Organisational
Behaviour. 1993, London: Pitmans Publishing.

[10] Urwick, L., Notes on the Theory of Organization.
1952: American Management Association.

[11] Moffett, J. and M. Sloman, The Source of Authority
for Commercial Access Control. IEEE Computer,
1988(February): p. 59-69.

[12] Damianou, N., et al., Ponder: A Language for
Specifying Security and Management Policies for
Distributed Systems - The Language Specification.
2000, Imperial College: London.

[13] Dobson, J. and J. McDermid. A Framework for
Expressing Models of Security Policy. in IEEE
Symposium on Security and Privacy. 1989. Oakland,
CA.

[14] Dobson, J. New Security Paradigms: What Other
Concepts Do We Need as Well? in 1st New Security
Paradigms Workshop. 1993. Little Compton, Rhode
Island: IEEE Press.

[15] Jackson, D., Micromodels of Software: Lightweight
Modelling and Analysis with Alloy. 2001/2002,
Software Design Group, MIT Lab for Computer
Science.

[16] Mikhailov, L. and M. Butler. Combining B and
Alloy. in ZB 2002: Formal Specification and
Development in Z and B. 2002. Grenoble, France.

[17] Jackson, D. A Micromodularity Mechanism. in 8th
Joint Software Engineering Conference. 2001.
Vienna, Austria.

