
The Effect of Trust Assumptions on the
Elaboration of Security Requirements

Charles B. Haley1 Robin C. Laney1 Jonathan D. Moffett2 Bashar Nuseibeh1

1Department of Computing
The Open University

Walton Hall, Milton Keynes, MK7 6AA, UK
{C.B.Haley, R.C.Laney, B.Nuseibeh} [at] open.ac.uk

2Department of Computer Science
University of York

Heslington, York, YO10 5DD, UK
jdm [at] cs.york.ac.uk

Abstract

Assumptions are frequently made during requirements
analysis of a system-to-be about the trustworthiness of its
various components (including human components).
These trust assumptions can affect the scope of the
analysis, derivation of security requirements, and in some
cases how functionality is realized. This paper presents
trust assumptions in the context of analysis of security
requirements. A running example shows how trust
assumptions can be used by a requirements engineer to
help define and limit the scope of analysis and to
document the decisions made during the process. The
paper concludes with a case study examining the impact
of trust assumptions on software that uses the Secure
Electronic Transaction (SET) specification.

1. Introduction

Requirements engineering is concerned with
determining the characteristics of a system-to-be. The
system-to-be comprises not only software, but also all the
diverse components needed for it to achieve its purpose.
For example, a computing system clearly includes the
computers, but also incorporates the people who will use,
maintain, and depend on the system; the environment
within which the system will exist; and any systems
already in place.

An important element of a system’s requirements is its
security requirements. Security requirements arise
because stakeholders assert that some objects, be they
tangible (e.g. cash) or intangible (e.g. information and
state), have direct or indirect value. Objects valued in this
way are called assets, and the stakeholders naturally wish
to protect these assets from harm. For example, tangible
assets might be destroyed, stolen, or modified;
information assets might be destroyed, revealed, or
modified; and state might be modified, revealed, or
disputed (this list is not exhaustive). An asset can be used

to cause indirect harm, such as to reputation. The
requirements engineer uses security requirements to
restrict the number of cases wherein these undesirable
outcomes can take place. This paper presents how the
engineer’s derivation, elaboration and analysis of security
requirements can be aided through the use of trust
assumptions, problem frames, and threat descriptions.

Although not required, derivation of security require-
ments can be facilitated by the postulation of the existence
of an attacker. The attacker’s goal is to cause harm.
Ignoring the possibility of harm caused by accident or
error, if one can show that no attackers exist, then security
is irrelevant. An attacker causes harm by exploiting an
asset in some way. The possibility of such an exploitation
is called a threat. More precisely, a threat is the potential
for abuse of an asset in the context of the system that will
cause harm. An attack exploits a vulnerability in the
system to carry out a threat.

One can reason about the attacker as if he or she were a
type of stakeholder. Recent work has taken this approach,
looking at the requirements and goals of the attacker (e.g.
[1, 2, 15, 17, 18, 24]). From this point of view, an attacker
wants a system to have characteristics that create
vulnerabilities. The requirements engineer wants to ensure
that the attacker’s requirements are not met. A way to do
this is to specify sufficient constraints on the behavior of a
system to ensure that the number of vulnerabilities is kept
to an acceptable minimum [19]. Security requirements
provide these constraints.

One school of thought holds that a requirements engi-
neer should reason about a system’s characteristics in the
absence of a particular implementation of the system (e.g.
[14]). Under this view, requirements engineering is
concerned with enumerating goals for a system under
consideration and producing a description of the system’s
desired behavior. Another view, exemplified by problem
frames [12], is that a system is intended to solve a given
problem in a given context, where the context includes
design decisions. One uses problem frames to analyze the
problem in terms of the context and the design decisions

the context represents. The context contains domains,
which are the blocks that the system (not just software)
will be built with and around.

Security requirements demand a system-level analysis
[19]. Without knowing more about the components of a
system, the requirements engineer is limited to general
goals of the form X must not occur. Nothing can be said
about how such goals are enforced, or even if they are
feasible. To determine security requirements, one must
look deeper in the system. When using problem frames,
one analyzes the behavior of domains within the context
of the system to analyze the effects of the security
requirements and to show how they are satisfied.

Threat descriptions [7] are useful for reasoning about
security requirements in a problem frames environment.
Threat descriptions assist with locating potential
vulnerabilities, which are closed either by modifying the
context or adding trust assumptions. A trust assumption is
a decision about how much to trust the supplied indicative
(objectively true) properties of domains that make up the
system and evaluate the risks associated with being
wrong. Trust assumptions can have a fundamental impact
on how the system is realized [25, 26]. They can affect
which domains are included in the analysis, the risk that
vulnerabilities exist, and the risk that a system design is
not stable or correct. During analysis, trust assumptions
permit the requirements engineer to decide which domains
need further analysis and which do not.

This paper presents work combining trust assumptions,
problem frames, and threat descriptions, showing how the
combination aids in derivation, elaboration and analysis of
security requirements. The paper is complemented by [7],
which describes analyzing security requirements using
threat descriptions. Section 2 provides some background
material on problem frames. Section 3 discusses security
requirements. Section 4 describes the role of trust
assumptions. Section 5 is a case study, Section 6 presents
related work, and section 7 concludes.

2. Problem Frames

In the problem frames universe, all computing
problems involve the interaction of domains in the world.
Domains are either tangible (e.g. people, equipment,

networks) or intangible (e.g. information). The problem
frames notation [12] is useful for diagramming the
domains involved in a problem and the interconnections
between them, and for analyzing the behavior of these
domains within the problem’s context.

Every domain has interfaces, which are defined by the
phenomena visible to other domains. Descriptions of
phenomena of given (existing) domains are indicative; the
phenomena and resulting behavior can be observed.
Descriptions of phenomena of designed domains (domains
to be built as part of the solution) are optative; one hopes
to observe the phenomena in the future.

For example, assume that talking to stakeholders pro-
duces a requirement “open the door when the door-open
button is pushed.” Figure 1 is a problem frames diagram
of a solution to satisfy the requirement; an automatic door
system composed of three domains. The first domain is
the door mechanism domain, capable of opening and shut-
ting the door. The second is the domain requesting that the
door be opened; this domain includes both the ‘button’ to
be pushed and the human pushing the button. The third is
the machine, the domain designed to fulfill the require-
ment that the door open when the button is pushed. The
dashed-line oval presents the requirement that the problem
must satisfy; by definition the requirement is optative. The
dashed arrow from the requirement oval indicates which
domains are to be constrained by the requirement.

To illustrate the idea of phenomena, consider the
person+button (PB) domain in Figure 1. The domain
might produce the event phenomena ButtonDown and
ButtonUp when the button is respectively pushed and
released. Alternatively, it might produce the single event
OpenDoor, combining the two events into one.

Phenomena are normally shown on a diagram on the
interface between two domains. The format is X!Y, where
X is an abbreviation of the name of the source domain and
Y is some label describing the phenomenon. In the
example, the ButtonDown event might be shown as
PB!ButtonDown.

The interplay of phenomena among the domains
defines how the system accomplishes the goal. This
interplay is a specification, describing how the
requirements are satisfied [30]. The difference between
specification and requirement is important. A specification
is an expression of the behavior of phenomena visible at
the boundary of the domains, whereas a requirement is a
description of the problem to be solved. For example, in
the context of a building we might find the requirements
‘permit passage from one room to another’ and
‘physically separate rooms when possible’. Clearly the
problem involves something like doors. Equally as clearly,
it does not specify that doors be used, nor does it specify
internal phenomena or behavior. It is up to the designer
(the architect in this case) to choose the ‘door’ domain(s)
for the system. One might satisfy the requirement with a

Control
Machine

Figure 1 – A basic problem frames diagram

Door
Mechanism

Person +
Button

Open door
when button

pushed

blanket, an automatic door, a futuristic iris, or a garden
maze. Each domain implementation presents different
phenomena at its boundaries (i.e. they work differently),
and the resulting system specification must consider these
differences. However, the requirement does not change.

There are two fundamental diagram types in a problem
frames analysis, the context diagram and a set of problem
frame diagrams. The context diagram shows all the
domains in a system and how they are interconnected.
Each problem frame diagram examines a problem in the
system, showing how a given requirement is to be
satisfied. In small systems, the context diagram and the
single problem frame diagram are almost identical and
may be combined. For larger systems, the domains in the
collection of problem diagrams are a projection of the
context, showing only the domains or groups of domains
of interest to the particular problem.

Figure 2 shows a context diagram for a system that will
be used as an example in sections 3 and 4 of this paper.
The system is a subset of a Human Resources system
having four requirements:
− Salary, personal, and benefits information shall be able

to be entered, changed, and deleted by HR staff. This
information is referred to as payroll information.

− Each employee shall be able to view a subset of his or
her own personal and benefits information.

− Users shall have access to kiosks located at convenient
locations throughout the building and able to display
an ‘address list’ subset of personal information
consisting of any employee’s name, office, and work
telephone number.

− At most 24 hours of modifications to information shall
be vulnerable to loss.
This set of requirements could be broken down into

four subproblems, one for each requirement. In the
interest of brevity, only one of the subproblems, the one
for the third requirement, is discussed in this paper. Figure
3 shows the problem diagram for this requirement (the
‘address list’ function). Phenomena have been
intentionally omitted. Security requirements will be added
in the next section.

3. Security Requirements

Security requirements are often defined as “restrictions
or constraints placed on system services” [13]. We slightly
restate this definition: security requirements express
constraints on the behavior of a system. The constraints
are intended to limit system behavior as much as possible
while still satisfying the requirements. For example, a goal
for an ATM might be provide cash to customers. This
goal is obviously overly broad from a security point of
view. By providing constraints (security requirements),
the circumstances under which cash is to be provided are
reduced.

Security requirements are added to prevent harm
through misuse of assets [7, 19]. An asset is something in
the context of the system, tangible or not, that is to be
protected [11]. A threat is the potential for abuse of an
asset that will cause harm in the context of the problem. A
vulnerability is a weakness in the system that an attack
exploits to realize a threat. Security requirements are
constraints on functional requirements, intended to reduce
the scope of vulnerabilities. Thus, security requirements
stipulate the location and elimination of vulnerabilities
that an attacker can exploit to carry out threats on assets.

The security community has enumerated some general
security goals, labeling them using the acronym CIA, and
more recently another A [20]:
− Confidentiality: ensure that an asset is visible only to

actors authorized to see it. This is larger than ‘read
access to a file’. It includes visibility of a data stream
on a network or of a paper on someone’s desk.

− Integrity: ensure that the asset is not corrupted. As
above, integrity is larger than ‘write access to a file’,
including triggering transactions that should not occur,
changing contents of backup media, making incorrect
entries in a paper-based accounting system, or
changing a data stream between its source and its sink.

− Availability: ensure that the asset is readily accessible
to agents that need it. A counterexample is preventing
a company from doing business by denying it access to
something important, such as access to its computer
systems or its offices.

− Authentication: ensure that the provenance of the asset
or actor is known. A common example is the simple

Benefits
Information

Personal
Information

Salary
Information

Machine Backup
Device

People

Figure 2 – Example context diagram

Backup
Media

Display

Figure 3 –Address list

Display

People

Display
address list

info

Machine

Address List
Subset

login. More complicated examples include mutual
authentication (e.g. exchange of cryptography keys),
and intellectual property rights management.

By operationalizing these goals (connecting them with
specific assets), then inverting the sense of the goals, one
can construct descriptions of possible threats on assets.
These threat descriptions are phrases of the form
performing action X on/to/with asset Y could cause harm
Z [7]. Referring to the example presented above, some
possible threat descriptions are:
− Exposing salary data could reduce employee morale,

lowering productivity.
− Changing salary data could increase salary costs,

lowering earnings.
− Exposing addresses (to headhunters) could cause loss

of employees, raising costs.
To use threat descriptions, the requirements engineer

examines each (sub)problem diagram to see if the asset
involved in the threat is found in the problem. To be in a
problem, the asset must be either a domain or part of a
domain, or be found in the phenomena. If the asset is
found in the problem, then the requirements engineer must
apply constraints on the problem to ensure that the asset is
not vulnerable to being used in the way that the action in
the threat description requires. These constraints are
security requirements, and are indicated by adding an
inversion of the threat description as an annotation to the
requirement, as in prevent exposure of salary data or only
by HR staff. The security requirements are then satisfied
by changes and/or additions to the domains or phenomena,
changing the behavior of the domains in the context.

Without going into the mechanics of how the security
requirements are determined (see [7]), analysis of Figure 3
shows that in order to maintain confidentiality and
integrity of the data, the network needs to be protected and
users must be authorized. A design decision is made to use
encryption on the network. The resulting problem frame
diagram is shown in Figure 4. The security requirement

has been added to the oval. Phenomena have been added
to support encryption, and the encrypted network has been
made explicit. How users are authorized is discussed in
the next section.

4. Trust Assumptions

When analyzing using problem frames, how a require-
ment is satisfied depends on the characteristics of the
domains in the problem. An analogous relationship exists
between security requirements and trust assumptions; how
security requirements are satisfied depends on the trust
assumptions made by the requirements engineer.

Trust assumptions are endemic in software and systems
development. Viega and McGraw put it very well in [26]:

A trust relationship is a relationship involving
multiple entities (such as companies, people, or
software components). Entities in a relationship
trust each other to have or not to have certain
properties (the so-called trust assumptions). If the
trusted entities satisfy these properties, then they
are trustworthy. Unfortunately, because these
properties are seldom explicitly defined, misguided
trust relationships in software applications are not
uncommon.
We use the definition of trust proposed by Grandison &

Sloman [5]: “[Trust] is the quantified belief by a trustor
with respect to the competence, honesty, security and
dependability of a trustee within a specified context”. In
our case, the requirements engineer trusts some domain to
participate ‘competently and honestly’ in the satisfaction
of a security requirement in the context of the problem.

A trust assumption is an acceptance by a requirements
engineer that the membership or specification of a domain
can depend on certain stated properties, up to some stated
level, in order to satisfy a security requirement.1 The
requirements engineer trusts the assumption to be true.
These assumed properties or assertions act as domain
restrictions; they restrict the dependent domain in some
way. A trust assumption is represented by an arc from the
dependent domain to an oval describing the properties
being depended upon.

Adding a trust assumption serves two purposes. The
first is to document the ways in which the requirements
engineer chooses to trust the behavior of domains that are
in the context for some reason. The second, which follows
from the first, is to explicitly limit the scope of the
analysis to these domains in the context. To illustrate the
latter, assume the existence of a requirement stipulating
that the computers operate for at least eight hours in the
event of a power failure. The requirements engineer can

1 The “stated level” is a measure of the “quantified belief” in the

definition of trust. At the moment, our quantification is binary. In future
work, the quantification will be over a finer scale.

Figure 4 –Address list revisited

Display
Information

People

Machine

Address
Info

Encrypted
Network

AI!data(KeyInfData)
M!data(KeyInfData)

Display address
list info
- Only to

authorized
people

satisfy this requirement by adding backup generators to
the system. Appropriate phenomena would be added to
detect the power loss, control the generators, detect going
beyond eight hours, etc. In most situations, the
requirements engineer can trust the manufacturer of the
generators to supply equipment without trapdoors that
permit an attacker to take control of the generators.
thereby restricting the domain to contain generators
without trapdoors. By making this trust assumption, the
requirements engineer does not need to include the supply
chain of the generators in the analysis.

4.1. Example: Using Authentication

Returning to our example, trust assumptions must be
added to the diagram in order to complete the picture. For
example, the analysis does not explain why the encrypted
network is considered secure or how address information
is to be protected. We must also determine that the users
are authorized to see the information, perhaps using
authentication.

Authentication is a system-level problem involving
many potentially complex processes. In order to derive
requirements for authentication, the requirements engineer
must choose how users are authenticated, perhaps based
on cost, risk, and ease-of-use factors.

Figure 5 presents a login and password solution, along
with some accompanying trust assumptions. The intent is
that only those with login credentials can access the
information. The requirements engineer is convinced by
the IT organization that the encryption system is strong
and that the keys being built into the system are secure;
the encrypted network connection domain does not require
further analysis. Furthermore, the key system tells the data
server the access level of the client machine; the behavior
of the server is constrained to refuse to supply information
above the access level indicated by the keys. Accepting

these explanations, the requirements engineer adds trust
assumptions TA1.1 and TA1.4 to the problem frame
diagram. TA1.2 indicates that the requirements engineer
chooses to trust the systems administrators to properly
manage access credentials, constraining the domain to
contain accurate information. Finally, the engineer
assumes that employees will keep their credentials
confidential (TA1.3), constraining the ‘people’ domain to
be ‘people with their own credentials’.

4.2. Example: Using Building Security

The login/password scheme may be unacceptable to the
customer. The IT department may refuse, saying that
giving all employees authentication information would be
too costly. The stakeholders may refuse, insisting that
requiring a login would make the system too hard to use.
An alternate solution is to make use of the fact that the
front door of the building is protected by a security guard;
the guard restricts entrance to authorized personnel. The
security manager agrees that the security guard can stand
in for authentication.

Figure 6 presents this alternate solution. Authentication
is removed and trust assumption TA2.2 is added, having
the effect of changing the People domain to Employees by
restricting membership to people allowed to enter the
building by the security system. The authentication-related
trust assumptions are removed. It is up to the customer to
decide if the associated risk profile is acceptable.

4.3. Trust Assumptions as Domain Restrictions

The above examples support our position that trust
assumptions are domain restrictions. The clearest example
is the security system trust assumption (TA2.2 in Figure
6); it restricts the membership of the People domain to

Figure 5 – Address list with authentication

Display
Information

People

Machine

TA1.1: IT Admin:
Keeps keys secure.
Encryption is strong

Address
Info

Encrypted
Network

AI!data(KeyInfData)
M!data(KeyInfData)
plus Authentication

TA1,4: IT
Admin: domains

are secure

Display address list
information

- Only to employees
Authentication

Data Info

P!credentials (name, pw)
M!credentialsRefused

plus application phenomena

TA1.2: IT Admin:
correct

administration

TA1.3: Employees:
Credentials kept

private

people acceptable to the door guard, effectively
converting the domain to employees. The other trust
assumptions play a similar role. For example, TA1.2 (IT
Admin: correct administration) trust assumption limits the
number of people having acceptable credentials.

TA2.1 and TA2.3 (IT Admin: domains are secure and
the IT Admin: keeps keys secure) illustrate restricting
behavior (specification) as opposed to membership. In the
case of TA2.3, the behavior of the Address Info domain is
restricted to supply information only at the level indicated
by the key; the assertion is that no other case exists. In the
case of TA2.1, the domain is restricted to supplying ‘in
the clear’ information to holders of valid encryption keys;
the assertion is that no alternate method to obtain the
information exists.

The authorization solutions presented in sections 4.1
and 4.2 clearly have different risk profiles. A future
project, adding non-binary quantification of the trust level
in the trust assumption, will help measure the differences
and choose which profile/design is the most acceptable.

5. Case Study

The Secure Electronic Transaction (SET) Specification
[21-23] describe a set of mechanisms intended to provide
an acceptable level of security for on-line purchasing. This
case study looks at incorporating the SET specification
into software to support cardholder-side payment
authorization. There is one requirement (in the problem
frames sense): Complete the Purchase. The study
considers one asset, Customer Account Information (CAI),
and one derived security goal Purchases shall be
authorized. Several trust assumptions are derived during
the analysis.

To derive the trust assumptions, we first determine the
threat descriptions, then negate them to express the
security requirements (the constraints). Two threat
descriptions are used in this case study: exposure of

cardholder account information could lead to financial
loss (from the goal of confidentiality), and unauthorized
use of cardholder credentials could lead to financial loss
(from the goal of integrity). Appropriate security
requirements (constraints) are added to the requirements:
only authorized users may know CAI and only authorized
individuals may use the cardholder credentials. The
resulting trust assumptions will be listed in a later section.

5.1. SET Overview

SET describes a series of operations between players in
an electronic purchase transaction using a credit card. In
SET, a cardholder requests a cryptographic certificate
from a certificate authority (CA). The CA verifies that the
cardholder has a credit card account with an issuer, and
then supplies a certificate. The cardholder can
subsequently use the certificate to make purchases from a
merchant. The merchant uses a payment gateway to pass
the transaction to the acquirer (the merchant’s bank) for
collection. The acquirer normally operates the payment
gateway. Figure 7 presents a simplified version of the SET
“processing flows” (terminology from [21]), showing the
players and the messages they interchange. Several SET
messages and fields that do not have a direct bearing on
this discussion have been omitted from the diagram, in
particular the obtaining of certificates and private keys,
and the initial verification of cardholder information. In
addition, the diagram shows the merchant using the CAI,
which although optional in SET is the technique that the
SET specification claims will be the most often used. [22:
pg. 14]

5.2. SET-Identified Security Assumptions

The SET specifications make the following security-
related assumptions relevant to this case study about the
SET environment:

Figure 6 – Address list with door security

Display
Information

Employees

Machine

TA2.1: IT Admin:
keeps keys secure.

Encryption is strong.

Address
Info

Encrypted
Network

AI!data(KeyInfData)
M!data(KeyInfData)

TA2.3: IT
Admin: domains

are secure

Display address list
information

- Only to employees

TA2.2: Building Security:
Only employees can enter

the building

application phenomena

• SA1: The cardholder ensures that no one else has
access to his/her private key. [21: pg. 16] In
particular, SET software vendors shall “ensure that
the certificate and related information is stored in a
way to prevent unauthorized access.” [21: pg. 46]

• SA2: Cardholder, merchant, and payment gateway
machines are free of viruses and trojan horses, and are
not susceptible to being hacked. [21: pg. 11]

• SA3: Programming methods and the cryptographic
system, and in particular the random number
generators, are of the highest quality. [21: pg. 16]

• SA4: The merchant’s system stores account
information in an encrypted form, and if possible off-
line or behind a firewall. [22: pg. 39]

5.3. The Initial Context/Problem Diagram

As there is only one requirement in this case study and
therefore only one problem diagram, we are dispensing
with separating the context diagram from the problem
diagram. In addition, we are not showing any analysis of
the ‘shopping’ process, instead focusing on the point
where a purchase is completed. Taking the SET
processing flows into consideration, a first-cut problem
diagram is shown in Figure 8.

The threat descriptions being used in this study tell us
to examine the problem for uses of the information asset
cardholder account information (CAI), which is made
visible by the CAI phenomena in the context diagram, and
the asset cardholder credentials, stored in the machine.

By tracing the CAI through the problem diagram, we
see that it resides in unknown form within the Machine
domain. According to the SET specification, the CAI must
be encrypted between the machine and the merchant.
There is nothing in the diagram that indicates that the user
or the merchant can obtain the CAI. We can say the same
thing for cardholder credentials. These positions and the
security requirements SA1-SA4 lead us to make the
following trust assumptions:

• TA1-1: As the credentials are stored on the machine,
and as there is no apparent way to limit who can
access these credentials, SA1 forces us to assume that
the domain Users in the problem contains only
individuals authorized to use the credentials.

• TA1-2: The storage containing the CAI and the
credentials is not readable outside the machine. (SA2)

• TA1-3: The generated symmetric encryption keys are
cryptographically secure. (SA3)

• TA1-4: The merchant cannot know the cardholder’s
private key, and therefore cannot access the CAI that
it passes through to the payment gateway. Conflicts
with SA4.

The first trust assumption (TA1-1), that the domain
Users contains only authorized individuals, is clearly very
risky. There is no information available to justify the
claim. The analyst should add domains and phenomena to
the problem to reduce the risk. A similar statement must
be made about TA1-2, because nothing is said that allows
the engineer to claim that the storage is secure. If the
information can be read without supplying a key that is
not stored on the machine, then the existence of viruses,
spyware, and other programs/users make the trust
assumption’s claim ludicrous. Vulnerabilities to the
threats still exist, and appropriate domains and phenomena
must be added to close the vulnerabilities and satisfy the
requirement.

Verifying TA1-3 is probably not necessary, assuming

Issuer

Cardholder

Merchant

Payment Gateway
(acquirer)

Shop

1: Checkout (Certs)

2:OK (Certs, TI)

3: Give (PI, pgCAI)

5: Authorize (CAI, AMT)

6: OK AUTH

7: OK AUTH (meCAI)

8: OK Purchase

9: Rqst Payment (TI, AMT)

12: OK PMT

10: Pay (CAI, MAI, AMT)

11: OK PMT

Certs: Public Key SET certificates

CAI: Cardholder account information

meCAI: CAI encrypted w/merchant key

pgCAI: CAI encr. w/ pmt gateway key

MAI: Merchant account information

TI: Transaction identifier

PI: Payment instructions

Figure 7 – Simplified SET processing flows

Merchant

Machine
stores CAI
+ priv keys

Users

Figure 8 – Purchase problem

Display
results

MA!checkout()
ME!OK_purchase
MA!give()
ME!OK

US!authorize

MA!result()

Authorize
purchase
- Only auth

users may
use creds
& see CAI

Merchant

Machine

Users

Figure 10 – Purchase problem (again)

Display
results

Authorize purchase
- Only auth users may

use creds & see CAI

Payment
Gateway

Encr. Storage
CAI & creds

TA2-1: Users:
won’t expose

passphrase

TA2-2: Merchant:
implements SET

recommends

TA2-3: Merchant:
emps won’t reveal

CAI

TA2-4: Merchant:
CAI not on LAN

unencrypted

Merchant

Machine

Users

Figure 9 – Purchase problem (again)

Display
results

MA!checkout(…)
ME!OK_purch
MA!give(…)
ME!OK

US!authorize(passphrase)

MA!result(…)

Authorize
purchase
- Only auth

users may
use creds
& see
CAI

Payment
Gateway

ME!authorize(…)
PG!OK_AUTH

MA!GetInfo(passphrase)
ST!Info(...)

Encr. Storage
CAI & creds

tha

,
ass

A1-
1 w

 trust
ass

sers will not expose the passphrase.
recom-

• zed to see

• on the

• ply to the merchant also

F ong with the four trust
ass

hat the passphrase will
rem

assumptions are problematic.
Th

curity
req

6. Related Work

We are not aware of other work investigating the
ca

groups are looking at the role of trust in
sec

t the cryptographic software comes from a company
that the requirements engineer believes has verified its
applications. If the engineer cannot confirm this belief,
then a domain representing the encryption software must
be added to the context, and then analyzed appropriately.

TA1-4 serves to limit the scope of the analysis
uming that nothing on the other side of the merchant

can expose CAI to the merchant. Unfortunately, the SET
‘processing flows’ diagram (step 7) shows that the
payment gateway can give the CAI back to the merchant.
The trust assumption is invalid and must be removed.

Figure 9 presents the modified problem. Because T
as rejected, a passphrase has been added to verify that

the user is authorized. The passphrase is used to encrypt
the CAI and certificate storage. In addition, the context
has been expanded to include the payment gateway.

The new problem diagram exposes the following
umptions:

• TA2-1: U
• TA2-2: The merchant implements the SET

mendations and securely stores the CAI. There is no
practical way to bypass this security, regardless of
storage medium (operational, backup, etc.)
TA2-3: The merchant’s employees authori
the CAI will not compromise the information.
TA2-4: The CAI never appears in the clear
merchant’s internal network.
The same assumptions that ap

apply to the payment gateway.
igure 10 presents the solution al

umptions. To reduce the complexity of the diagram, the
phenomena and the trust assumptions applied to the
payment gateway are not shown.

The risk presented by TA2-1, t
ain confidential, may or may not be acceptable. For

example, a French bank decided the risk was too high, and
included a smartcard reader in its implementation. The
user must both know the passphrase and insert the
smartcard into the reader.

The remaining trust
ere is no practical way for a requirements engineer to

examine every merchant and payment gateway company,
so the assumptions must be accepted at face value.

The trust assumptions required to fulfill the se
uirement might provoke the requirements engineer to

reconsider whether a customer-side product based SET is
worth constructing. Given that the CAI can be stored on
the merchant’s machine, the difference between a SET
solution and the ubiquitous solution based on SSL (secure
sockets layer) is not large. Using SET, it is more difficult
for a merchant to change an order, but a dishonest
merchant would have no problem creating new non-SET
orders charged to the customer. Dishonest merchants and
employees could sell the account information. Hackers
could steal it. There is nothing the engineer can do to
mitigate the problems exposed by these trust assumptions.
The customer/stakeholders must decide whether the risks
are acceptable.

pture of a requirements engineer’s trust assumptions
about the domains that make up the solution to the
problem.

Several
urity requirements engineering. In the i* framework

[27, 29], Yu, Lin, & Mylopoulos take an ‘actor, intention,
goal’ approach where security and trust relationships

within the model are modeled as “softgoals”: goals that
have no quantitative measure for satisfaction. The Tropos
project [4] uses the i* framework, adding wider lifecycle
coverage. Gans et al [3] add distrust and “speech acts”. Yu
and Cysneiros have added privacy to the mix [28]. All of
these models are concerned with analyzing trust relations
between actors/agents in the running system, as opposed
to capturing the requirements engineer’s assumptions. As
such, an i* model complements the approach presented
here, and in fact can be used to determine the goals and
requirements, a position corroborated by the differences
between the analysis in our case study and the i*-based
SET case study found in [4].

He and Antón [8] are concentrating on privacy,
wo

ody of work focuses on security
req

7. Conclusions and Future Work

We have provided an approach for using trust
ass

ptions is part of a larger context
wh

coupling of trust
ass

Acknowledgements: The financial support of the

eferences:
er, "Modelling the Interplay of Conflicting Goals

ing:

[2] eh, "Security
it

n

[3] et al., "Requirements
ased

31

[4] and J. Mylopoulos, "Requirement

ag

[5] ement Tools

2.

[6] aley, R.C. Laney, J.D. Moffett, and B. Nuseibeh,

rking on mechanisms to assist trusting of privacy
policies, for example on web sites. They propose a
context-based access model. Context is determined using
“purpose” (why is information being accessed),
“conditions” (what conditions must be satisfied before
access can be granted), and “obligations” (what actions
must be taken before access can be granted). The
framework, like i*, describes run-time properties, not the
requirements engineer’s assumptions about the domains
forming the solution.

Another related b
uirements without special emphasis on trust, either in

the completed system (as above) or during development
(as in this work). van Lamsweerde et al use “obstacles” to
analyze security & safety [16] in KAOS, and are
developing the notion of anti-goals to discover and close
vulnerabilities [15]. Alexander is looking at detecting
vulnerabilities using misuse cases [1], as are Sindre et al
[24]. McDermott uses ‘abuse cases’ [18]. Heitmeyer has
added security requirements to SCR [9], as have In and
Boehm with the WinWin framework [10]. None of the
work incorporates explicit capture of how a requirements
engineer uses trust when specifying a system.

umptions when reasoning about security requirements.
The approach uses the strong distinction between system
requirements and machine specifications found in problem
frames, permitting the requirements engineer to choose
how to conform to the requirements. The trust
assumptions embedded in the solution inform
requirements engineers, better enabling them to choose
between alternate ways of satisfying the functional
requirements while ensuring that vulnerabilities are
removed or not created.

Work on trust assum
erein security requirements are determined using the

crosscutting properties of threat descriptions [7]. In future
work, the trust assumptions will play a critical role in

analyzing cost and risk. A non-binary quantification of the
level of trust will be used in this context.

Another future focus will be a tighter
umptions and problem frames. When a larger problem

is decomposed, the domains in the problem diagrams are a
projection of the context. The projection can combine
domains into single entities, or it can split a domain into
its component parts. Having such projections raises the
question “to what, exactly, is the trust assumption
connected?” The question is important because trust
assumptions have impacts on the membership and
phenomena of the projected domain, and we must
determine how these impacts affect other problems that
reference any part of the projected domain.

Leverhulme Trust is gratefully acknowledged. Thanks
also go to Michael Jackson for many insights about
problem frames and requirements, and to our colleagues
Luncheng Lin and Debra Haley for their careful review of
this paper. This paper is a revised and extended version of
[6].

R
[1] I. Alexand

with Use and Misuse Cases," Proceedings of 8th
International Workshop on Requirements Engineer
Foundation for Software Quality (REFSQ'02). Essen,
Germany, 9-10 Sep 2002, pp. 145-152.

R. Crook, D. Ince, L. Lin, and B. Nuseib
Requirements Engineering: When Anti-Requirements H
the Fan," Proceedings of the IEEE Joint International
Conference on Requirements Engineering (RE'02). Esse
Germany, 2002, pp. 203-205.

G. Gans, M. Jarke, S. Kethers,
Modeling for Organization Networks: A (Dis)Trust-B
Approach," Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering (RE'01).
Toronto, Canada, IEEE Computer Society Press, 27-
Aug 2001, pp. 154-165.

P. Giorgini, F. Massacci,
Engineering Meets Security: A Case Study on Modelling
Secure Electronic Transactions by VISA and Mastercard,"
Proceedings of the 22nd International Conference on
Conceptual Modeling. Chicago IL USA, Springer-Verl
Heidelberg, 13-16 Oct 2003, pp. 263-276.

T. Grandison and M. Sloman, "Trust Manag
for Internet Applications," Proceedings of the The First
International Conference on Trust Management, vol. 269
Heraklion, Crete, Greece, Springer Verlag, 28-30 May
2003.

C.B. H
"Picking Battles: The Impact of Trust Assumptions on the
Elaboration of Security Requirements," Proceedings of the
Second International Conference on Trust Management

(iTrust'04), vol. 2995. St Anne's College, Oxford UK,
Lecture Notes in Computer Science (Springer-Verlag),
Mar - 1 Apr 2004, pp. 347-354.

C.B. Haley, R.C. Laney, and B.

29

[7] Nuseibeh, "Deriving

s,

[8]

g

[9]

ion

S

[10]
Annals of

[11] ISO/IEC, ation Technology - Security Techniques -

[12] M. , 2001.

 Kingdom:

[14] -oriented Requirements
ifth

[15] quirements

 May

[16] E. Letier, "Handling Obstacles in

[17] . Ince, M. Jackson, and J. Moffett,

Security Requirements from Crosscutting Threat
Descriptions," Proceedings of the Third International
Conference on Aspect-Oriented Software Development
(AOSD'04), K. Lieberherr, Ed. Lancaster UK, ACM Pres
22-26 Mar 2004, pp. 112-121.

Q. He and A.I. Antón, "A Framework for Modeling Privacy
Requirements in Role Engineering," Proceedings of the
Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality, The 15th
Conference on Advanced Information Systems Engineerin
(CAiSE'03). Klagenfurt/Velden, Austria, 16 Jun 2003.

C.L. Heitmeyer, "Applying 'Practical' Formal Methods to
the Specification and Analysis of Security Properties,"
Proceedings of the International Workshop on Informat
Assurance in Computer Networks: Methods, Models, and
Architectures for Network Computer Security (MMM ACN
2001), vol. 2052. St. Petersburg, Russia, Springer-Verlag
Heidelberg, 21-23 May 2001, pp. 84-89.

H. In and B.W. Boehm, "Using WinWin Quality
Requirements Management Tools: A case study,"
Software Engineering (Kluwer), vol. 11 no. 1, Nov 2001,
pp. 141-174.

Inform
Evaluation Criteria for IT Security - Part 1: Introduction
and General Model, International Standard 15408-1,
ISO/IEC, Geneva Switzerland, 1 Dec 1999.

Jackson, Problem Frames, Addison Wesley

[13] G. Kotonya and I. Sommerville, Requirements
Engineering: Processes and Techniques, United
John Wiley & Sons, 1998.

A. van Lamsweerde, "Goal
Engineering: A Guided Tour," Proceedings of the F
IEEE International Symposium on Requirements
Engineering (RE'01). Toronto, Canada, IEEE Computer
Society Press, 27-31 Aug 2001, pp. 249-263.

A. van Lamsweerde, "Elaborating Security Re
by Construction of Intentional Anti-Models," Proceedings
of the 26th International Conference on Software
Engineering (ICSE'04). Edinburgh Scotland, 26-28
2004, pp. 148-157.

A. van Lamsweerde and
Goal-oriented Requirements Engineering," Transactions on
Software Engineering (IEEE), vol. 26 no. 10, Oct 2000, pp.
978-1005.

L. Lin, B. Nuseibeh, D
"Introducing Abuse Frames for Analyzing Security
Requirements," Proceedings of the 11th IEEE International
Requirements Engineering Conference (RE'03). Monterey
CA USA, 8-12 Sep 2003, pp. 371-372.

[18] J. McDermott, "Abuse-Case-Based Assurance Arguments,"
Proceedings of the 17th Computer Security Applications
Conference (ACSAC'01). New Orleans LA USA, IEEE
Computer Society Press, 10-14 Dec 2001, pp. 366-374.

[19] J.D. Moffett and B. Nuseibeh, A Framework for Security
Requirements Engineering, Technical Report YCS368,
Department of Computer Science, University of York,
York UK, Aug 2003.

[20] C.P. Pfleeger and S.L. Pfleeger, Security in Computing,
Prentice Hall, 2002.

[21] Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification Book 1: Business Description,
Version 1.0, Purchase NY, 31 May 1997.

[22] Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification Book 2: Programmer's Guide,
Version 1.0, Purchase NY, 31 May 1997.

[23] Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification Book 3: Formal Protocol
Definition, Version 1.0, Purchase NY, 31 May 1997.

[24] G. Sindre and A.L. Opdahl, "Eliciting Security
Requirements by Misuse Cases," Proceedings of the 37th
International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS-Pacific'00).
Sydney Australia, 20-23 Nov 2000, pp. 120-131.

[25] J. Viega, T. Kohno, and B. Potter, "Trust (and Mistrust) in
Secure Applications," Communications of the ACM, vol. 44
no. 2, Feb 2001, pp. 31-36.

[26] J. Viega and G. McGraw, Building Secure Software: How
to Avoid Security Problems the Right Way, Addison
Wesley, 2002.

[27] E. Yu, "Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering," Proceedings of
the Third IEEE International Symposium on Requirements
Engineering (RE'97). Annapolis MD USA, 6-10 Jan 1997,
pp. 226-235.

[28] E. Yu and L.M. Cysneiros, "Designing for Privacy and
Other Competing Requirements," Second Symposium on
Requirements Engineering for Information Security
(SREIS'02). Raleigh, NC USA, 15-16 Oct 2002.

[29] E. Yu and L. Liu, "Modelling Trust for System Design
using the i* Strategic Actors Framework," Trust in Cyber-
societies, Integrating the Human and Artificial
Perspectives, R. Falcone, et al., Eds., Springer-Verlag
Heidelberg, 2001, pp. 175-194.

[30] P. Zave and M. Jackson, "Four Dark Corners of
Requirements Engineering," Transactions on Software
Engineering and Methodology (ACM), vol. 6 no. 1, Jan
1997, pp. 1-30.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

