
 

Proceedings of the Conference on Organizational Computer Systems (COCS'91) 
Atlanta, Georgia, 5–8 November 1991 

SIGOIS Bulletin vol 12, nos 2 & 3, pp 171-184. 

The Representation of Policies as System Objects 
 

Jonathan D. Moffett & Morris  S. Sloman1  
 

Imperial College of Science Technology and Medicine 
Department of Computing, 180 Queen’s Gate, London SW7 2BZ, UK 

 

ABSTRACT 

This is an exploratory paper in which we describe aspects of management policy which could be modelled as 
objects in a distributed computer system, in order to enable them to be queried and manipulated.  Policies are 'the 
plans of an organisation to meet its goals'.  They are persistent entities which are intended to influence actions, 
either by motivating actions or by authorising them.  This distinction reflects the observation that agents only 
successfully carry out actions if they are both motivated and empowered to do so.  In addition to persistence, 
policies have other main characteristics: they are directed to subjects; they are typically organised in hierarchies in 
which the goal of a policy is achieved by creating lower-level policies until identifiable actions are completed; and 
policies may conflict, so they require to have a precedence ordering. 

There is a need to represent and manipulate policies, as objects within the computer system, so that they can be 
used to influence the activities of automated managers within large distributed computer systems.  We describe a 
possible structure for policy objects and the operations which can be performed on them.  Their attributes include: 
modality (positive or negative motivation or authorisation); policy subjects, goals, and target objects; and the 
constraints which may apply.  The method of representation of relationships between policies is left as an open 
issue. 

Related work and concepts in the modelling of policies are referred to, including a brief discussion of security 
models in this context.  The open issues raised by this paper are described. 
 
 

Keywords  
 
Management policy, security models, authority, motivation, distributed system management. 
 
 

                                                 

1 Email addresses: jdm@doc.ic.ac.uk & mss@doc.ic.ac.uk 



 

1 INTRODUCTION 

1.1 Policies in Distributed Systems  

All formal organisations have policies, which are defined in the dictionary as 'the plans of an organisation to meet 
its goals'.  They have two related purposes: to define the goals of the organisation; and to allocate the resources to 
achieve the goals.  The policies are used as a means of management, in a hierarchical fashion.  A high-level policy 
guides a manager, who may achieve its goals by making lower-level policies which apply to other managers lower 
in the hierarchy. 

Most organisations issue Policy Statements, intended to guide their members in particular circumstances.  Policies 
may provide positive guidance about the goals of the organisation and how they are to be achieved, or constraints 
limiting the way in which the goals are to be achieved.  Other policy statements allocate (give access authorisation 
to) the resources which are needed to carry out the goals.  If they allocate money they are typically called 
Budgets. 

The background to this paper is work in Distributed System Management (DSM), particularly on the Conic 
[Magee 1989] and Domino [Law 1990] projects and in the Special Interest Group on DSM [Sloman 1987].  In this 
context, distributed systems are those in which several autonomous computers, exchanging information over a 
communications network, cooperate to achieve goals.  It has become apparent that work on DSM inevitably 
involves discussion of policies which have to be agreed and set up by independent management agents in order to 
cooperate in distributed systems.  Areas in which this is relevant include:  
• Access control:  authority cannot be delegated or imposed from one central point in a distributed system, but 

has to be negotiated between independent managers who wish to cooperate but who may have a very 
limited trust in each other [Moffett 1991].   

• Configuration of systems:  change management is governed by requirements for the maintenance of 
consistency which may be described by general principles which can be expressed as policies [Kramer 
1989]. 

• Quality of Service (QoS) of communications, where end-to-end service policies for qualities such as 
reliability and security have to be negotiated and monitored [Sluman 1990]. 

• Accounting for communications across networks, where the need for integration of users’ costs requires the 
coordination of policies [Estrin 1991]. 

A common theme in the above examples of DSM is the need for independent managers to be able to negotiate, 
establish, query and enforce policies which apply to a defined general set of situations. 

An example of interaction between independent managers arises from the interconnection of two network 
management domains  such as a Public Network (PN) and a local Imperial College (IC) network.  This requires 
communication between the PN and IC network managers in order to exchange management information and 
establish access rules.  Let us suppose that there are two relevant policies in force:  PN policy gives the PN 
Manager the authority to carry out all relevant management operations on the network; and IC policy requires the 
IC Network Manager to report regularly on the status of the academic subset of PN nodes.  We call these 
managers the subjects of the policies.  In the absence of any other policies, then the PN Manager has the 
authority to provide the regular status information, but no motivation to do so, while the IC Network Manager has 
the motivation to obtain the information but no authority to do so.  The initial situation is shown in figure 1a. 

An additional policy has to be established (created) by the PN Manager to meet IC’s requirements.  One approach 
is to create a policy which motivates the PN Manager himself to generate the status information and provide it to 
the IC Network Manager regularly, as shown in figure 1b.  An alternative approach to create a policy which gives 
the the IC Network Manager the authority to perform the operations needed to obtain the regular status 
information, as shown in figure 1c. 



 

This example brings out one of the main points in the model.  Policies which motivate activities and policies giving 
authority to carry out activities can each exist independent of each other.  However, if only one of the two kinds 
of policies exists in relation to an action, the action will not be performed.  For management activities to be carried 
out, there needs to be a manager who is the subject of both kinds of policy: a policy giving authority to carry out 
the activity; and a policy motivating her to do so. 

PN Network

Academic 
nodes

all ops Read  
 status

Power Motivation

PN 
Manager

IC Network 
Manager

PNNetwork

Academic 
nodes

PNNetwork
Acad nodes

all  
ops

Read  
status

Power & 
Motivation

a) Initial Situation b) PN management operation c) IC management operation

Information

Read  
status

all  
ops

PN 
Manager

IC Network 
Manager

PN 
Manager

IC Network 
Manager

Generate 
Status  

for IC status rprt

status rprt

st
at

us
 r

pr
t

 
Figure 1  Policies for PN & IC Managers  

1.2 The Motivation for Modelling Policies 

The example above shows that there is a need for a means by which independent managers can query, negotiate, 
set up and change policies.  It can of course be done by the well-tried method of telephone calls and the exchange 
of paper, but there are potential benefits in using the distributed system itself to communicate and store policies, 
particularly with respect to automated management.  There is thus a need to be able to represent and manipulate 
policies within a computer system.  It is important that the representation of policies and the protocols used to 
negotiate them should be uniform across management applications. 

Storing an organisation's policies in a database permits staff to search, using keywords, for  policies relevant to 
their proposed plans.  The Pythagoras project [Bedford-Roberts 1991], discussed in section 6.2 below, is 
concerned with modelling policies for this purpose.  

With the automation of many aspects of management in distributed systems and computer networks, there is the 
need to represent management policy within the computer system so that it can be interpreted by automated 
managers in order to influence their activities.   

This paper owes its origin to the Management Policy Workshop held at Imperial College, London on 27th February 
1991 [Sloman 1991].  The workshop explored the need for management policies in distributed systems, and how 
policies could be modelled as objects, in order to enable them to be queried and manipulated.  This paper aims to 
create a framework capturing as many general aspects of management policies as possible, while exposing those 
issues which require further work.  

1.3 Characteristics of Policies 

We define some characteristics of the policies which we will be discussing in order to give a working definition 
which is more precise than simply ‘plans’.  We start from the basis that policies are intended to influence actions.  
As shown in the example above, we distinguish between policies which are intended to motivate actions to take 
place and policies which give or withhold power for actions to take place.  Actions are operations which are 
performed by agents provided two preconditions are satisfied: motivation and power  (see figure 2): 



 

• Motivation is the term we use to imply that the agent wishes to carry out an action, and will do so provided 
he has the power to do so. 

• Power implies that if an agent attempts to carry out an action, he will succeed.   

One method of acquiring power is through delegated authority, which we define to be legitimately acquired 
power.  The very concept of a policy implies a well-ordered world, and so policies are rarely concerned with 
unauthorised power.  We take the simplifying view that all policies giving power can be viewed as giving 
authority, and in the rest of this paper we categorise policies as being either authorisation or motivation policies.   

Agents are always humans, but it is convenient to extend the concept of 'action' to include computer processes 
which they have commanded to carry out actions.  An agent's motivation is represented by him submitting a 
command to the computer system.  His authorisation is represented by more than one mechanism: the access 
control system authorises his use of named resources, while an accounting system may authorise his use of 
commodities such as file store and cpu time, if their use is controlled. 

AgentA  is 
motivated to 

perform OpX on 
ObjectB

OpX has been 
performed by 

AgentA on 
ObjectB

AgentA  has power 
to perform OpX on 

ObjectB

AgentA 
performs OpX on 

ObjectB

 

Figure 2  Preconditions for Action 

Policies are not concerned with instant decisions to perform an action, instantly carried out.  If a manager specifies 
that something is to be done once only, and instantly, he does not create a policy, but simply causes the action to be 
carried out.  Whether the policy defines a single future action to be carried out, or repeated actions, or relates to 
the maintenance of a condition, it needs to have persistence.  Ex1 is a command which is to be carried out 
immediately and has no persistence, so we do not regard it as a policy. 

The System Administrator is to back up department D's disc files to tape now. Ex1 

Policies are about organisational goals, which need someone to achieve them.  All our policies have subjects, the 
people to whom they are directed, although in some cases the policy applies to all members of an organisation. Ex2 
has no agent to which it is directed, so we do not consider it to be a policy.   

It should always be possible to recover from media failure. Ex2 

It is a fundamental characteristic of policies that they are organised in a hierarchical fashion.  Examples Ex3, Ex4 
and Ex5 illustrate this: 

The manager of Department D is to ensure that the department can always recover from media 
failure. 

Ex3 

The System Administrator is to back up department D's disc files to tape once a week. Ex4 

There is a system command (which was input by the System Administrator) to run a job which 
backs up department D's disc files to tape each Friday at midnight. 

Ex5 

We may suppose that a director of an organisation has made policy Ex3 and given responsibility to the manager of 
department D to carry out the policy.  The manager has made policy Ex4 and given responsibility to the System 
Administrator to carry it out, which he has done by creation of policy Ex5.  We regard policies as being made at a 
high level by a manager and responsibility for achieving their goal being assigned to other members of staff, who 
may in turn do one of these things: 
i) Create a lower level policy which will achieve the policy goal they have been assigned, and assign 

responsibility for it to another member of staff.  This is what the manager did in the policy statement Ex4. 



 

ii) Achieve the specified goal themselves by carrying out actions which achieve the goal, e.g. if the System 
Administrator manually runs a job each week to back up the files. 

iii) Delegate the task not to another member of staff, but to a computer system which will carry out actions 
which achieve the the goal.  This is what the System Administrator has done in Ex5. 

It might be suggested that the distinction between authorisation and motivation policies is artificial.  Since no action 
can be performed without the agent having both authority and motivation, there is no point in having separate types 
of policy.  However, there are cases where we need to separate authorisation and motivation policies because it is 
sensible for a manager to have the authority for some action without immediate motivation to do it, or conversely to 
have responsibility, but no direct authority to do it.  In the following examples Ex6 & Ex7 it will be simpler to 
describe the situation by having separate policies for authorisation and motivation: 

X has authority to create access rules for the entire organisation.  Other managers motivate him to 
create access rules according to criteria which they specify separately. 

Ex6 

X is responsible for getting the office rewired, even though he is not an electrician and is not 
authorised to do rewiring.  However, he has an adequate budget, and pays an electrician to do the 
job. 

Ex7 

2 POLICIES AS OBJECTS 

It is useful to view policies as objects which can be created, destroyed and queried.  The object-based view is that 
an operation is performed by a user object (representing the agent) on a target object by sending a message to it.  
We extend this view to distinguish between an operation and and an operation request, which is a message 
issued by the user object which will only be delivered to the target object if it is authorised.   

2.1 Components of Policy Objects 

We model a policy, whether concerned with motivation or with authorisation, as an object having at least the 
following attributes: 
• Modality - a policy has one of the following modalities: positive authorisation (permitting), negative 

authorisation (forbidding), positive motivation (requiring), and negative motivation (deterring).  We do not 
exclude the possibility of other useful policy modalities being proposed, but these are adequate for the 
present analysis. 

 An example of a negative motivation policy is Ex8, similar in intention to Ex3: 

Department D is to prevent loss of data from media failure. Ex8 

• Policy subject - This attribute defines the user objects to whom the policy applies, i.e who are authorised 
or motivated to carry out the policy goal within the limits defined by the policy constraints.  The policy 
subject is an expression which defines a set of user objects or a predicate which a user object may satisfy.  
Where a policy has been automated as a computer system command we regard the user who inputs the 
system command as the policy subject.  See section 2.2 below. 

• Policy target  object, which defines the objects at which the policy is directed.  It also is an expression 
which defines a set of objects.  See section 2.2 below. 

• Policy goal - the goals or actions defined by the policy, which are modelled as operations to be performed 
on the target object.  See 2.3 below. 

• Policy constraints - predicates which must be satisfied before the policy is to have any effect.  See 2.4 
below. 

In addition, we need a means of representing the relationships which can exist between policies: the satisfaction 
relationship between policies in a hierarchy; and the precedence relationship between conflicting policies, 
discussed in section 5, below.  We do not know at this stage of research what is the best method of representing 
them. 



 

2.2 Policy Subjects and Target Objects 

Policy subjects and target objects may be specified either as a set of objects which can be enumerated or by 
means of a predicate which is to be satisfied.  Example Ex3 above is an example of the former.  The following 
examples, Ex9 and Ex10, show policies where the subjects and target objects, respectively, are defined in terms of 
predicates: 

[Any user who is] an Owner of an object may delegate Manager authority of the object to another 
user. 

Ex9 

All users must apply encryption to the transmission of any financial transaction which is over 
£20,000. 

Ex10 

Policy subjects and target objects are not normally enumerated in terms of individual users as policy subjects or 
individual target objects.  Typically a policy is expressed in terms of organisational positions, not individuals, and 
groups of objects.   

One approach to specifying groups of objects and organisational positions is by using generic management domains 
[Sloman 1989].  They are objects which enumerate a set of objects to which a common management policy, such 
as access control, is to be applied.   

One essential characteristic of management domains is that their membership can be evaluated at any time.  Some 
policies, however, such as Ex9 and Ex10, are general principles which can be stated without necessarily being able 
to state at any moment the set of objects to which they apply.  The predicate may be expressed in terms of an 
attribute such as financial value, or a role such as ownership.   

2.3 Policy Goals 

Policy goals may define either high-level goals or actions.  Example Ex3 illustrates a high-level goal ‘ recover 
from [media failure]’; it does not prescribe the actions in detail, and we can imagine a number of different actions 
which could achieve the goal.  On the other hand, example Ex5 illustrates an action ‘run the BackUp job [on 
department D's disc files]’.  Note that the distinction between high-level goals and actions may depend upon the 
context.  In an environment in which there is one standard ‘back up’ operation defined, example Ex4, ‘back up 
[department D's disc files]’ might be regarded as an action policy, while in other situations it might be a goal in 
which the System Administrator has several options for action.  Where there is no risk of ambiguity we abbreviate 
‘high-level goal’ to ‘goal’. 

In order to distinguish between actions and goals, we need to have an alphabet of the operations which can be 
performed by objects in a system.  Then any goal which is expressed purely in terms of the operations is an action, 
and any other goal is to be regarded as a high-level goal.  Procedures, often found in organisations' policy 
manuals, can be regarded as a sequence of actions. 

Although examples Ex3 and Ex4 are motivation policies, the distinction between goals and actions is equally valid 
for authorisation policies.  There may be a high-level authorisation policy, such as Ex11: 

No-one is authorised to carry out any financial transactions without specific authorisation. Ex11 

We can translate this into our policy object model as ‘All users (subject) are not authorised (modality) to carry 
out any financial transactions (goal) [on accounts (target objects)] without specific authorisation (constraint)’. 

Actions represented by operations naturally have three components: the target object on which it is performed, the 
operation performed on it, and one or more parameters to the operation.  Policies may relate not only to the 
operation name, but also to parameters of the operation.  In the following example, Ex12, the amount of the 
transaction is a parameter of the operation, and forms a part of the authorisation policy: 

Financial managers are authorised to carry out financial transactions of a value up to £1 million. Ex12 



 

2.4 Policy Constraints 

The policy constraints component of a policy object places constraints on its applicability.  They are predicates 
which may be expressed in terms of general system properties, such as extent or duration, or some other condition.  
An example of constraints in authorisation policies expressed by access rules is the limits on the terminal from 
which the operation may be performed, and/or limits on date or time, as shown in Ex13: 

Members of Payroll may Read Payroll Master files, from terminals in the Payroll office, between 9 
am and 5 pm, Monday to Friday. 

Ex13 

Policy constraints may be also be expressed in terms of conditions or attributes of objects such as users and target 
objects.  See Ex14 and Ex15: 

John is responsible for backing up the department’s files until Jim returns. Ex14 

If a machine is identified as causing trouble to other users, it will have to be disconnected from the 
network. 

Ex15 

2.5 Operations on Policy Objects 

For simplicity we assume a minimal set of operations which can be performed on policy objects: 
• Create a policy 
• Destroy a policy 
• Query a policy 

We may or may not want to require authorisation to perform operations on policy objects.  If the computer system 
is simply a documentation aid, we might want to have no restrictions on the operations at all, or perhaps just a 
warning if an invalid policy object is created (e.g. a filing clerk being the policy subject for the company's corporate 
strategy).  On the other hand, if the policies are actually used to influence system actions, as in the case of access 
control policies, restrictions on operations are required.  They are discussed in detail for authorisation policies in 
[Moffett 1991].  A similar approach for motivation policies is discussed in section 4.2 below. 

Although we regard all policies as objects, some may be altered dynamically while others are fixed policies, fixed 
for the life of the system.  The following example, Ex16, is implicitly an example of a fixed policy .   

The system coding is to ensure that it is impossible for a user to be logged on at two terminals 
simultaneously. 

Ex16 

The object which expresses that policy will typically be separate from the coding that implements it.  On the other 
hand the system could use that policy object as part of its implementation; for example the policy could be 
represented by an object with a Read-only attribute stating the number of terminals at which the user could be 
logged on, which the system queries when appropriate.  The reason for recording it as a persistent object will be to 
ensure that it is recognised as deliberate, and not removed as an undesirable restriction at the next software 
release.  Using it as part of the implementation will enable systems with differing policies to be generated more 
easily  

3 AUTHORISATION POLICIES 

The most common form of authorisation policy is access control.  We briefly consider security models of access 
control in section 3.1, and discuss one approach to discretionary access control in section 3.2. 

However access control is concerned with named, atomic resources - objects.  We have to consider also the 
power to use commodity resources, such as file store and cpu in computer systems, and commodity resources 
such as money and manpower when considering actions outside computer systems.  This is an area for further 
study, not covered in this paper. 



 

3.1 Security Models 

Security models, in general, do not attempt to model policies as objects.  However, policies are recognised as 
essential to security modelling.  A number of different models of security policies are discussed in [Olson 1990]. 

The USA Department of Defense Trusted Computer System Evaluation Criteria (TCSEC) [DoD 1985] regard a 
security policy as a fundamental aspect of its approach.  ‘There must be [a] ... security policy enforced by the 
system.  ... there must be a set of rules that are used by the system to determine whether ...’.  The implication is 
that a policy is a set of rules which guide the actions of the system.  We may note that, if a rule is viewed as a 
potential system object, this definition is compatible with our own view of policy objects.  The definition of security 
policy in the OSI Security Architecture [ISO 1988] is similar: ‘The set of criteria for the provision of security 
services’. 

Logical access control is divided by the TCSEC into two categories: mandatory and discretionary.  Mandatory 
access control enforces polices which are built into the design of the system and cannot be altered except by 
installing a new version of the system.  TCSEC does not define it formally, but an example is the policy that in 
multi-layer security systems data cannot be read by a user with a lower security classification than has been 
assigned to the data.  It defines discretionary access control mechanisms as those which allow users to specify 
and control sharing of objects with other users.   

We need to consider how this categorisation fits into our model.  There are in fact three different characteristics 
which appear to go into the Department of Defense definition of mandatory access control: 
• The policy cannot be altered. 
• The policy applies universally, i.e. the set of policy subjects is all the objects in the system. 
• The policy has priority over all other policies, i.e. over discretionary access control policies. 

With these implied assumptions, therefore, we can reconcile the two views of policies.  But it must be recognised 
that the ability to model policies as objects is not very useful when discussing mandatory security. 

3.2 Discretionary Access Control 

We here discuss one particular approach to discretionary access control, covered in more detail in [Moffett 1990].  
We define authorisation policy objects, access rules, whose purpose is to enable the system to decide whether to 
allow users to perform operations on target objects.  A simple Access Rule is shown in Figure 3.  It specifies a 
User Domain,  which identifies the set of possible users who can perform operations; the Target Domain, which 
identifies the set of possible target objects on which operations can be performed, and the Operation Set , which 
are the authorised operations a user can perform on a target.  There is no default access allowed to users.  An 
operation request is authorised if and only if an access rule exists which applies to it, i.e. if the user object is in the 
set defined by the user domain of the rule, the target object is in the set defined by the target domain of the rule 
and the operation is in the operation set of the rule.   

User 
Domain

Target 
Domain

Operation Set

OpA 
 ... 
OpZ 
 ...

DomX DomY

 
Figure 3  An Access Rule  

We can see that an Access Rule maps quite precisely onto our policy model:  the Modality is always positive 
authorisation; the Policy Subject is the User Domain of the Access Rule; the Policy Target Object is its Target 



 

Domain; and the Policy Goal  is its Operation Set.  Constraints, typically relating to date, time or location of user, 
are also allowed in Access Rules. 

4 MOTIVATION POLICIES 

4.1 Responsibility 

We have simply stated that a policy subject 'is responsible' for carrying out the goal of a motivation policy, and all 
that we have meant so far is that someone has the intention that the subject should carry out the action.  For the 
moment we will simply assume that policy subjects do what is required of them, although this is of course too 
simple a view for adequate analysis of responsibility.  However, we often talk about someone, who we call the 
policy manager, being ‘responsible to’ someone else.  See the following example, Ex17: 

The Head of Department decides that the System Administrator shall be responsible to the 
Administration Manager for backing up the department’s files. 

Ex17 

In order to represent this the policy object could be extended with a new attribute - the policy manager - to 
represent this situation, but we prefer to keep the policy object as simple as possible.  Our preferred approach is to 
create another instance of a policy object, for which the subject is the policy manager, motivating him to take 
appropriate reward or punishment actions if the first policy is, or is not, carried out. 

Ex17 is therefore represented by two policy objects, each created by the Head of Department.  One motivates the 
System Administrator to do the backup actions, and report to the Administration Manager  on their success or 
failure.  The other motivates the Administration Manager to supervise the System Administrator and take 
appropriate action, depending on what the System Administrator does. 

There is now the requirement that it is necessary to be able to refer to one policy from another.  However, since 
this can be done by selection of a named attribute within an object, this does not give rise to any conceptual 
problem. 

Note that, as discussed in section 1.3 above, we do not assume that, because a subject is responsible for actions, 
he has the authority to put his intentions into effect.  He may have been given responsibility without power, which 
is a situation which may be deplored but must be able to be described.  Alternatively, the power may be indirect, as 
in the example Ex9. 

4.2 Operations on Motivation Policy Objects 

The operations on motivation policy objects are the straightforward ones of Create, Destroy and Query.  If the 
policy objects are regarded as more than a documentation aid, then we want to support the notion that users can 
only create policy objects within the scope of their responsibility.  The concept of Delegation of Responsibility is a 
familiar one, and in this model will be represented by the creation of motivation policy objects within the constraints 
of a hierarchy of managerial responsibility.  In this section we do no more than sketch out a possible approach. 

We represent a manager’s delegation of responsibility for a goal to another user agent as the creation of a new 
policy object, as we have seen above.  The Creation operation is itself subject to a fixed policy. 

The fixed policy for creation of a new motivation policy which we recommend is that he should be able to create 
the new policy object only if three conditions are met: 
• The set of users to whom responsibility is delegated (the subject of the new policy object) is a subset of 

those which he can actually motivate to perform the goal.  We will say that the set of users is within the 
user scope of the manager. 

• The set of target objects to which the new policy object is directed is a subset of those on which he is 
motivated to achieve his own goal.  We will say that the set of target objects is within the target scope of 
the manager. 



 

• The goal of the new policy object is a goal which the manager is motivated to achieve by some existing 
policy.  We will say that the goal is within the goal scope of the manager. 

The user and target scopes needed are identical to those which are used in the delegation of authority - a domain 
expression which defines a set of users.  See [Moffett 1991] for a discussion of this.  On the other hand, definition 
of ‘goal scope’ is impossible until we have successfully defined goals.  However, the intuition is that goals should 
be ordered, and that policy creation should only be permitted if the goal in the created policy is less (in the 
ordering) than the goal scope of the manager.  As an example, selling may be considered ‘less’ than marketing, 
which includes market research and product development as well as selling.  This is an area which requires further 
work. 

5 INTERACTIONS BETWEEN POLICIES 

5.1 Policies as Collections of Policy Statements 

[Holden 1991] does not attempt to present a complete model of policies, but concentrates on (motivation) policies 
as collections of statements.  He distinguishes between action, goal (high-level goal in our usage) and rule 
(negative motivation in our usage) statements.  From some examples taken from system management, he makes a 
number of observations: 
• Policies are often not derived from single policy statements, but from a collection of statements.  Goal 

statements are often constrained by one or more rule statements. 
• Policies can interact and sometimes conflict.  The result can be undecidable or self-contradictory. 
• Goal statements are often under-specified, and may become fully specified through: other policies; external 

constraints, e.g. physical or legal; and/or choices made by the management system. 
• Policy statements assume the existence of information to resolve references, e.g. a quantitative measure of 

quality of service or knowledge of the structure of a system. 

5.2 Hierarchical Policies 

Hierarchical policies were introduced in examples Ex3 – Ex5 in section 1.3 above.  Two questions arise from the 
informal example:  
• What does it mean for one policy to ‘achieve the policy goal’ of another?  
• What are the relationships between creators and subjects in a hierarchy of policies?   

We do not attempt to answer these questions in this paper.  They require further work. 

5.3 Ordering of Policies 

There needs to be a precedence ordering policies in two circumstances: when policies conflict; and when two 
actions are incompatible, as when there is competition for the allocation of scarce resources, needing policies for 
priority. 

There are a number of ways in which policies can conflict.  The simplest is when there are two policies, one of 
which motivates or authorises a subject to perform an operation on an object and the other deters or forbids it.  
Other conflicts are more complex, e.g. when an overriding 'separation of duties' policy declares defined pairs of 
actions to be in conflict.  Simple conflicting policies need a precedence ordering to determine which is to have 
priority.  For example, there is an assumption in existing security models that mandatory security policies have 
precedence over discretionary security policies.  If a discretionary policy authorises an action and a mandatory 
policy forbids it, it is forbidden.   

Policies defining priorities state an explicit precedence order, e.g. example Ex18 



 

The following priority ranking will be given to requests for [purchase of] hardware or software 
resources:  1)   Mainline teaching resources ....2)   Equipment for support staff ....3)   Equipment for 
optional courses .... 

Ex18 

We interpret a set of priorities as interacting policies; the policy subject is motivated to perform the first priority 
action, unless there is no longer any requirement for it, and then the second one, and so on.  Priorities require 
another concept, satisfaction of a policy, after which policies with a lower priority may be addressed. 

6 OTHER RELATED WORK 

The related work in this area can be characterised in two orthogonal dimensions: motivation and authorisation 
policies; and policies as objects (in some very broad sense) or as social processes.  The work on contract 
models, Pythagoras and policies as collections of statements, deals with policies as motivating objects, and the 
process approach also concentrates on motivation.  The work on security models, in particular on delegation of 
authority, discussed in section 3 above, deals with authorisation policies. 

6.1 Contract Models 

The approach in ISTAR [Dowson 1987], an Integrated Project Support Environment is to use contracts as the 
model for activities in the software development process.  Each activity is conducted by a ‘contractor’ (e.g. a 
programmer), for a ‘client’ (e.g. a manager).  It has precisely defined deliverables and acceptance criteria, and 
other contractual conditions.  Where the size or complexity of a contract warrants, the contractor is free to issue 
‘subcontracts’ to help fulfil the original contract; the subcontractors may themselves issue ‘subcontracts’ and so 
on.  The collection of tasks that compose a complete software project forms a contract hierarchy.  At the root of 
this hierarchy is the contract for the project as a whole.  The leaves of the hierarchy are the self-contained 
contracts which are completed without letting subcontracts.  The intermediate nodes of the hierarchy are 
subcontracts which themselves let subcontracts.  Eventually all the subcontractors will complete their assigned 
tasks, allowing completion of the original contract. 

The TOBIAS project [Marshall 1991] follows this approach, and introduces responsibility as the central element 
of a contract. A role specifies a set of types and possibly a subset of their operations.  Agents are responsible for 
carrying out their assigned roles, and are responsible to their clients as their source of authorisation.  Contracts 
specify the responsibilities of agents by setting out the roles they can play and for whom.  The application example 
is different in kind from ISTAR.  ISTAR sees contracts as being created for the performance of specific 
development tasks, and discharged on completion.  The example in TOBIAS, on the other hand, is relationships in 
the UK National Health Service between patients, doctors and management and regulatory agencies.  These, and 
therefore the contracts between them, are inherently persistent, and should be regarded as policies as we have 
defined them here. 

One approach to cooperation in distributed problem-solving [Smith 1981] - task-sharing -uses contracts.  In this 
situation a contract is an explicit agreement between a node that generates a task (the manager) and a node willing 
to execute the task (the contractor).  The manager is responsible for monitoring the execution of a task and 
processing the results of its execution.  The contractor is responsible for the actual execution of the task.  A 
contract is established by a multi-stage process of mutual selection: advertisement by the manager; bid submission 
by available nodes; bid evaluation by the manager; and conclusion of the contract between the manager and the 
successful bidder. 

6.2 Pythagoras  

The Pythagoras project [Bedford-Roberts 1991], is concerned with modelling policies in order to create a database 
of the policies of an organisation.   Initially its purpose is for users to query the database, matching textual patterns 
in the policy statements, in order to enable them to ascertain what policies may exist in a specified subject area.  
The system does not interpret or constrain the contents of policies, although this might be considered as a future 
development. 



 

A policy in Pythagoras is a right or responsibility declared so as to prompt action conformant with an intention.  
There are two types of occasion when it is normal to apply policy: firstly, when intention and consequent action are 
separated in time; and secondly, when intention and consequent action are associated with different people.  This 
is consistent with our view of policies as being essentially persistent, because the action cannot be an immediate 
consequence of an intention. 

There is another interesting distinction in Pythagoras, between satiable and insatiable goals, which could 
respectively be viewed as: goals which are achieved, like ISTAR contracts, by carrying out actions; and goals to 
maintain state, e.g. ‘keep the department running’. 

6.4 Deontic Logic 

Deontic logic, because of its ability to specify the concepts of obligation and permission directly, is an attractive 
candidate for expressing policies.  The natural approach is to equate motivation with obligation, and authority with 
permission, and thus model policies in terms of existing logical models. 

The work apparently closest to our interests is [Lee 1988], which proposes the use of deontic logic for the 
description of bureaucratic systems and authority hierarchies.  He uses a language similar to Prolog to record the 
deontic status of users and actions.  Although the language allows expression of obligation as well as permission, 
the examples are all confined to permission, and the relationship between obligation and permission is not explored. 

Modal Action Logic (MAL) [Jeremaes 1987] provides a means of system specification using modal logic.  
Obligation (obl) expresses the notion of liveness, that an action must happen at some time in the future, while 
permission (per) expresses the notion of safety, that an action is permitted to happen.  However, this version of 
MAL is unsatisfactory for our purpose, because obl overrides per in MAL; one cannot express authorisation and 
motivation policies independently.  [Fiadeiro 1990] removes the overriding of per by obl.  However, the intuitive 
view of motivation is a long way from obl.  '.. a live trajectory is such that every event that is obligatory after a 
prefix of the trajectory will occur later on.'  Although this captures the notion of liveness, it is too strong for our 
purposes.  What we mean when we say someone is motivated to do something is something such as 'he will do 
this action at some point in the future, unless another event occurs which removes his motivation'.  In other words 
motivation may cease to be true, because the policy has changed before he has been able to carry out the action, 
whereas obl appears to be perpetual.  These comments on MAL should not be interpreted as criticism of it for the 
purpose for which it has been designed: embedded real-time systems.  However, it does illustrate that it cannot be 
extended simply to our application. 

There appear, to the potential consumer of deontic logic, to be three main aspects to the requirements which affect 
the design of the logic:  
a) The orthogonality of the two main modes of a policy, motivation and authorisation.   
b) The need for policies to be able to be created and then destroyed without residual effects. 
c) The need to be able to resolve conflict between policies. 

Aspect a) implies a more complicated set of modalities than is supplied by the work mentioned above.  The work 
of Pörn on action theory [Pörn 1977] provides this.  We are examining the possibility of equating our 
‘authorisation’ to the modality M, where Map says ‘it is possible for a that p’.  ‘Motivation’ might then be 
represented by his ‘intentional action’, which says that ‘a intends to bring it about that q’.  Aspect b) does not 
appear to present major problems, as it does not present any demands beyond those already provided by an action 
logic such as MAL. 

The possibility of conflicting policies - aspect c) - means that we cannot take a straightforward view of any single 
policy statement.  [Wieringa 1989] refers to two ways of interpreting ‘It is forbidden to park here,’ as the 
promulgation of a rule or as the observation that a rule exists.  Similarly the statement in Ex6 that ‘Payroll clerks 
have authority to Read Payroll files’ may be a correct observation of a policy, but is not necessarily the 
promulgation of a rule, e.g. if there is another policy in existence, with higher priority, which denies that authority.  
Similar comments apply to motivation polices where a positive motivation is frustrated by the combination of limited 



 

resources and another policy with higher priority.  Our way ahead will either be to treat policies as statements in 
this way, or else to treat them as defaults which may be overridden. 

Our work on using deontic logic for policy specification is at an early stage, and work is continuing. 

7 SUMMARY & CONCLUSIONS 

7.1 Summary 

We here summarise the concepts used in this framework. 

We model a policy as a persistent object with a unique identifier.  A policy object has four attributes: 
• Modality - possible values are: motivation (positive or negative); authorisation (positive or negative).  A 

motivation policy is one which influences whether the user attempts to achieve a goal.  An authorisation 
policy is one which influences whether the user has the power to achieve it.  Both are required for 
successful achievement of a goal.   

• Policy subject - a set of user objects to whom the policy applies.  This may be defined by enumeration, e.g. 
by the use of domains, or by predicate. 

• Policy target - a set of objects to which the policy is directed. 
• Policy goal - the goals or actions defined by the policy. 
• Policy constraints - predicates which must be satisfied before the policy is to have any effect. 

Policy goals may define either high-level goals or actions.  High-level goals do not prescribe specified 
operations, and a number of different actions may achieve a high-level  goal.  Any goal which is expressed purely 
in terms of the alphabet of the operations known in a system is an action policy, and any other goal is regarded as 
a high-level goal. 

We can analyse an action into three components: the object on which it is performed, the operation performed on 
it, and one or more parameters to the operation.  A similar analysis for high-level goals is thought to be possible 
but is not attempted in this paper.   

Policy constraints are predicates which may be expressed in terms of general system properties, such as extent 
or duration, or some other condition.  They determine whether a policy is to be applied in a particular context. 

Some policies may be altered dynamically while others are fixed policies, fixed for the life of the system.  The 
minimal set of operations which can be performed on dynamically alterable policy objects is Create , Destroy and 
Query.  Users need authority for these operations in the same way as for any other operations on objects.  We 
may require to place additional controls on the performance of operations on policy objects, to ensure that they are 
within the scope of the user who performs them.   

Authorisation policies may be partially implemented as access control systems whose purpose is to enable the 
system to decide whether to allow users to perform operations on objects.  However, authorisation policies for use 
of commodities are outside the scope of access control, but they also need to be modelled.   

Motivation policies are often associated with responsibility.  We do not attempt to define responsibility, but 
observe that when an agent is responsible to a manager for achieving a goal, two motivation policies are typically 
required, one to motivate the user to achieve the goal, and one to motivate the manager to supervise the user.   

We have identified three kinds of interactions between policies: 
• Hierarchical policies; 
• Conflicting policies relating to a single action; 
• Policies which define the relative priority of actions. 



 

7.2 Outstanding Issues 

We have identified a number of open issues in this paper. 

Hierarchical Policies - the hierarchical relationship of policies is fundamental to most views of them.  This 
requires the means of specifying hierarchical relationships between policy objects, of specifying high-level policy 
goals, and defining when completion of one goal or action achieves another goal. 

Precedence Ordering of Policies - This requires the means to enable the resolution of conflicts between 
policies and the expression of policy priorities. 

Reasoning about Policies - since a number of different policies may potentially apply to a single action, we need 
to be able to reason about the effects of multiple policies.  The possibility of using deontic logic for this purpose 
requires exploration. 

Implementation Tools - this paper has not addressed implementation issues at all.  Tools are needed for the 
representation and interpretation of policies in automated systems.  Although these exist for special cases of 
authorisation policies in the form of access control systems, they also need development for motivation policies, 
and generalisation so that  users have a uniform view of the two kinds of policy. 

Other issues are: the specification of policy constraints; the development of authorisation policies for commodities; 
and the scope ordering of goals and actions (to control creation of motivation policies). 

7.3 Conclusion 

This paper has explored the issues relating to the representation of management policies so that a framework for 
generic protocols for the definition of management policies can be established.  It has distinguished two main types 
of policy, relating to motivation and authorisation, and identified a number of characteristics which are common to 
most policies.  It has put forward a view about how they can be modelled as objects.  This can form the 
framework of a model of policies which will enable the construction of protocols so that independent managers can 
negotiate to create policies which will enable them to work cooperatively. 

The aim of our analysis has been to delineate the scope of the subject and expose the issues to be solved, 
particularly on relationships between different policies. Our work is at a very early stage and we recognise that we 
do not have the solutions to the problems of representing management policy. Our intention has been to open 
discussion and stimulate further work in the area to build and improve upon the initial framework we have 
suggested. 

ACKNOWLEDGEMENTS 

We acknowledge the contribution of the attendees at the the Management Policy Workshop in stimulating the 
ideas of this paper, in particular James Bedford-Roberts, whose constructive comments during extensive email 
correspondence were most helpful.  This work was carried out with the support of the UK DTI/SERC (Grant No. 
GR/F 35197) for the Domino project.   

REFERENCES 

[Bedford-Roberts 1991] Bedford-Roberts J., Concepts from Pythagoras, report HPL-91-22, February 1991, 
Hewlett-Packard Laboratories, Bristol, UK. 

[DoD 1985] Department of Defense (USA), Department of Defense Trusted Computer System Evaluation 
Criteria, DOD 5200.78 - STD (Dec 1985), (microfiche). 

[Dowson 1987] Dowson M., ISTAR - An Integrated Project Support Environment, Proc. 2nd Sigsoft / Sigplan 
Symposium on Practical Software Development Environments, Palo Alto, CA, Dec 1986, J SIGPLAN 
Notices, Vol 22 no 1 (January 1987), pp 27 - 33. 



 

[Estrin 1991] Estrin D. & Zhang L., Design Considerations for Usage Accounting and Feedback in 
Internetworks, to be presented at IFIP Symposium on Integrated Network Management, Washington, USA, 
April 1991. 

[Fiadeiro 1990] Fiadeiro J. & Maibaum T.S.E., Describing, Structuring and Implementing Objects, REX 
Workshop on Foundations of Object-Oriented Languages, May 1990. 

[Holden 1991] Holden D.B., An Exploration of the Nature of Management Policy, 
ESPRIT/5165/harw/T2.1/1_0, AEA Industrial Technology, Harwell Laboratory, Oxfordshire, UK, 5 Feb 
1991. 

[ISO 1988] ISO, Open Systems Interconnection: Security Architecture, ISO 7498/2, 1988. 
[Jeremaes 1987] Jeremaes P., Khosla S. & Maibaum T.S.E., A Modal (Action) Logic for Requirements 

Specification, in Brown 1986, pp 278-294. 
[Kramer 1989] Kramer J., Magee J. & Young A., A Refined Model of Change Management in, Distributed 

Systems, 3rd Workshop on Large Grain Parallelism, SEI/CMU Pittsburgh October 1989. 
[Law 1990] Law A.D., Sloman M.S. & Moffett J.D., The ‘Domino’ Project, Data Management ‘90 Conference, 

Egham, UK, 2-3 April 1990, BCS Data Management Specialist Group, pp 143-154. 
[Lee 1988] Lee R.M., Bureaucracies as Deontic Systems, ACM Transactions on Office Information Systems, vol 

6, no 2, April 1988, pp 87-108. 
[Magee 1989] Magee J., Kramer J. & Sloman M., Constructing Distributed Systems in Conic, IEEE 

Transactions on Software Engineering, vol 15 no 6, June 1989, pp 663-675. 
[Marshall 1991] Marshall L., Contracts for Controlling Management, in [Sloman 1991]. 
[Moffett 1990] Moffett J.D. Sloman M.S. & Twidle K.P., Specifying Discretionary Access Control Policy for 

Distributed Systems, Computer Communications, vol 13 no 9, pp 571-580 (November 1990). 
[Moffett 1991] Moffett J.D. & Sloman M.S., Delegation of Authority, in I. Krishnan & W. Zimmer (eds), 

Integrated Network Management II, North Holland (1991), pp 595-606. 
[Olson 1990] Olson I.M. & Abrams M.D., Computer Access Control Policy Choices, Computers & Security, 

vol 9 (1990) pp 699-714. 
[Pörn 1977] Pörn I., Action Theory and Social Science, D. Reidel Publishing Company, Dordrecht, 1977. 
[Sloman 1987] Sloman M.S. (ed), Distributed System Management, in Issues in LAN Management, ed I. 

Dallas & E. Spratt, pp 15-46 North Holland 1988. 
[Sloman 1989] Sloman M.S. & Moffett J.D., Domain Management for Distributed Systems, in Meandzija & 

Westcott (eds), Proc of the IFIP Symposium on Integrated Network Management, Boston, USA, May 1989, 
North Holland, pp 505-516. 

[Sloman 1991]  Notes from the Management Policy Workshop (chairman, M.S. Sloman)  held at the 
Department of Computing, Imperial College, London, 27th February 1991. 

[Sluman 1990] Sluman C., Domino QoS Framework, Domino paper C1/Sema/3.1 July 1990, available from 
Dept of Computing, Imperial College, London. 

[Smith 1981] Smith R.G. & Davis R., Frameworks for Cooperation in Distributed Problem, Solving, IEEE 
Transactions on Systems, Man & Cybernetics, Vol SMC-11, no 1 (Jan 1981), pp 61-70. 

[Wieringa 1989] Wieringa R., Meyer J-J. & Weigand H., Specifying Dynamic and Deontic Integrity Constraints, 
Data & Knowledge Engineering 4 (1989), North-Holland, pp 157-189. 


