
Policy2001: Workshop on Policies for Distributed Systems & Networks, Bristol, UK.
(Extended Abstract)

The Incorporation of Control Principles into Access Control Policies

Andreas Schaad1 & Jonathan D. Moffett
Department of Computer Science, University of York

Heslington, York YO10 5DD, UK
{andreas, jdm}@cs.york.ac.uk

1 Sponsored by the EPSRC under award no 99311141

1 Introduction
Access control policies should be based upon the
goals of an organisation, as expressed in its
control principles, but the principles are not
normally visible in the access control system
(ACS). It would be desirable to represent them
explicitly in the ACS so that they can be used in
access control policies and rules.

In this paper we discuss common control
principles and how they could be represented
within an ACS. We have started with the control
principle of Separation of Duties, and produced a
prototype simulation tool which shows the effect
of administrators' actions on the separation of
duties constraints of a RBAC (Role Based Access
Control) system.

2 Organisational Control Principles
2.1 Control Principles

In order to achieve and maintain control,
organisations set out control principles which are
used to guide its decisions, but they have not
become explicitly represented in ACSs. This
leads to the problem that proposed actions which
would breach the principles are not recognised by
the ACS, and may therefore be wrongly
permitted.
2.2 Common Control Principles

Each organisation uses a different set of control
principles as the individual control requirements
are very diverse. Some common control
principles are described below.

Separation of Duties: By partitioning critical
transactions and assigning sub-tasks to different
entities we prevent any one person from
performing the whole transaction, thus reducing
the risk of any error or fraud.

Delegation: Delegation is an important part of any
working organisation, since the main task of
management is to get work done through the
efforts of other people. Delegation of authority
can be seen as a specialisation of tasks and
responsibilities, through which a superior
delegates or transmits pieces of authority
downward in the organisational chain along with
the obligation to perform specific duties.

Supervision, Review and Audit: Supervision and
review control whether delegated tasks are carried
out as required. Supervision is a general activity
carried out by a person in a superior position.
Reviewing is task-specific and does not
necessarily need to be performed by a superior
position. Auditing in general serves as an activity
of checking that a system performs its required
function.

3 Security Policies and Control
Principles

As shown in figure 1, the ADF makes its decision
based on individual access rules, on information
about system users, on the system state (e.g. time)
and on fixed security policies. Both fixed security
policies and mutable access rules are incorporated
into the reference monitor. On the other hand
control principles are used by human beings
outside the access control system to determine
fixed policies and access rules. This makes the
enforcement of control principles difficult to
achieve reliably, because it is carried out on an ad
hoc basis by human beings who are liable to error.
It would be desirable to incorporate them into the
reference monitor, so that is becomes possible to
detect, within the system, if they are being
violated.

mailto:andreas@cs.york.ac.uk

Policy2001: Workshop on Policies for Distributed Systems & Networks, Bristol, UK.
(Extended Abstract)

Access Decision
Facility

Access Enforcement
Facility

Access
Rules

User
Profiles

Fixed
Security
Policies

System
State

Information

Administrator

Subject

Operation Request

Rejection

Operation

Reference
Monitor

Control
Principles

Object

determine

Figure 1: The Reference Monitor in MAC/DAC systems

4 Separation of Duties in Role-Based
Environments

Role based access control (RBAC) systems, e.g.
Sandhu’s RBAC96 model [1], are a development
of traditional MAC or DAC based systems,
providing a more abstract approach to access
control than their predecessors.

RBAC provides the mechanisms that are needed
for the integration of Separation of Duties into an
access control system, by introducing a set of
pairs of mutually exclusive roles (conflict set).
4.1 Separation of Duties - Related Work

The two initial papers on issues of separation of
duties are the Clark-Wilson [2] and Nash-Poland
[3] papers, emphasising its importance, while not
attempting to integrate it into a formal model.

Kuhn addresses the mutual exclusion of roles to
implement separation of duty in a role-based
access control system [4]. Simon et al. [5], show
different variations of the separation of duty in
role-based environments. The two categories of
separation of duties that they identify are strong
(Static) and weak (Dynamic) exclusion. Gligor et
al. [6] use the observations made in [5] for a more
formal description of separation of duties
characteristics.

Nyanchama et al. [7] introduce a taxonomy of
types of conflict of interest in their role graph
model. It puts emphasis on the different types of
conflict of interest in the three planes of users,
roles and permissions and the relations between
and among them.

4.2 Role Hierarchies and their Impact on
Separation of Duties

Role hierarchies are partial orders, and are
therefore transitive. Thus, if a user is a member of
a pair of roles which is not in the conflict set,
there may still be a violation of a separation of
duties policy as expressed by the conflict set. The
possible consequences of role hierarchies and
their interaction with control principles is
described in [8].

5 Animating Separation of Duties in a
Role-Based Environment.

One of the aims of our research is to prove
properties of experimental configurations of
access control systems. Ideally, this would be
done by formal proof but, unfortunately, currently
available proof support is not able to deal with
systems which are at all complex. We are
therefore using simulation to examine the results
of our experiments. Although it is not capable of
providing positive proof of correctness, it can
show, in many situation, that our design is wrong,
or has unintended consequences. Indeed, it has
already done so!

We wish to validate the state of an access control
system with respect to separation of duties. We
use Prolog and Visual Basic as the underlying
technologies for simulation. The result is the
SoDA (Separation of Duties Animator) tool that
can be used to analyse role-based access control
models for static separation of duties conflicts.
5.1 Using Prolog for the Simulation of

Separation of Duties Properties.

We are using Prolog for modelling Separation of
Duties properties because it handles recursive
queries naturally.

We have used a Prolog database of facts for our
database. Upon these facts we build some rules.
The model that we chose was Sandhu’s RBAC96
(RBAC1) model as it easy to implement,
sufficiently formalised and provides us with the
concept of role hierarchies.

Using a Prolog query interface we can ask our
system about facts such as existing roles, users or
permissions �, all mutually exclusive roles �, a
certain pair of exclusive roles or all the roles a
user is directly assigned to �. We can then use

Policy2001: Workshop on Policies for Distributed Systems & Networks, Bristol, UK.
(Extended Abstract)

these basic queries and combine them in rules
such as: asking for all roles that a user has also
inherited as a result of being assigned to a role; or
for a direct violation when a user is assigned to a
pair of mutually exclusive roles �. A combination
of rules � and � enables us to find violations due
to inheritance.

� role(R), user(U), permission(P).
� exclusive(Role1,Role2).
� ur_assignment(User,Role).
� inherits_from(Super_Role,Sub_Role):-
 is_a(Super_Role,Sub_Role).

inherits_from(Super_Role,Sub_Role):-
 is_a(Super_Role,Sub_Sub_Role),
 inherits_from(Sub_Sub_Role,Sub_Role).

� show_direct_violation(User,Role1,Role2) :-
 user(User), role(Role1), role(Role2),
 ur_assignment(User,Role1),
 ur_assignment(User,Role2),
 exclusive(Role1,Role2).
5.2 An Example System

Our example system is that of a software
development company. Within that company their
exist a variety of roles that company members can
take.

Several people will be assigned to the role of a
programmer whilst it is imaginable that the same
person works as a requirements engineer or on the
design of the graphical user interface. Also people
work on different projects at the same time.

Certain roles are required to be exclusive, either
directly, or by inheritance through the role
hierarchy.

The mutually exclusive roles are represented in
figure 2. A user must not be assigned to two roles
which are directly connected.

Req_Engineer

GUI_Designer

Junior_
Programmer

Config_
Manager

Tester

Senior_
Programm er

Figure 2: Mutually Exclusive roles

The role hierarchy is graphically represented in
figure 3.

Tester

Project_
Manager

Junior_
Programm

Senior_
Programm

Req_
Engineer

Config_
Manager Doc_

Writer

GUI_
Designer

QA_
Delegate

Figure 3: Roles and Role Hierarchy in the Company

5.3 The SoDA (Separation of Duties Animator)
tool

The SoDA GUI is an extension to the Prolog
query interface.

Figure 2: The SoDA user interface

Looking at figure 5, we can see that the tool has
found direct and an indirect (by inheritance)
violations of our mutual exclusion constraints for
the user jonathan. As we deliberately assigned our
user jonathan with the two exclusive roles of
senior_programmer and tester the direct violation is
easy to explain.

ur_assignment(jonathan,senior_programmer).
ur_assignment(jonathan,tester).

Policy2001: Workshop on Policies for Distributed Systems & Networks, Bristol, UK.
(Extended Abstract)

Of more interest is the fact that we also have an
indirect violation for the user jonathan. He is
directly assigned to the roles of the
senior_programmer, config_manager and tester. We
know which roles the role of the
senior_programmer inherits (figure 3) and we can
see that all of these are mutually exclusive to the
role of the config_manager, and one of them to the
tester role as well (Figure 4). This explains the
indirect violations as indicated in the lower right
box.

6 Conclusion

Technology

We are developing a second prototype with a
facility for integrating any ODBC supporting
database in order to allow the basic facts to be
held in a relational database. This would allow for
the direct run-time manipulation of the system and
a stronger separation of program logic from the
facts.

Separation of Duties

For the future we plan on extending the tool to
handle dynamic separation of duty constraints as
they provide a more flexible approach than the
static separation of duties. Also we are
considering studying roles and their activation in
different projects using the Chinese Wall
approach [9].

Other Control Principles

The techniques that we have used on separation of
duties appear to be possible to extend to the
control principle of delegation by using delegate
roles. It is perhaps more important, from a
practical point of view, to provide some means of
integrating the requirements of supervision,
review and audit into a system. This complex task
requires further work.

References
[1] Sandhu R., E. Coyne, H. Feinstein, and C.

Youman, "Role-based access control
models." IEEE Computer, vol. 29, pp. 38-47,
1996.

[2] Clark D. and D. Wilson, "A Comparison of
Commercial and Military Security Policies."

presented at IEEE Symposium on Security
and Privacy, Oakland, California, 1987.

[3] Nash M. and K. Poland, "Some Conundrums
Concerning Separation of Duty." presented at
IEEE Symposium on Security and Privacy,
Oakland, CA, 1990.

[4] Kuhn R., "Mutual exclusion of roles as a
means of implementing separation of duty in
role-based access control systems." presented
at Proceedings of the second ACM workshop
on Role-based access control, 1997.

[5] Simon R. and M. Zurko, "Separation of Duty
in Role-Based Environments." presented at
Computer Security Foundations Workshop
X, Rockport, Massachusetts, 1997.

[6] Gligor V., S. Gavrila, and D. Ferraiolo, "On
the Formal Definition of Separation-of-Duty
Policies and their Composition." presented at
IEEE Symposium on Security and Privacy,
Oakland, CA, 1998.

[7] Nyanchama M. and S. Osborn, "The role
graph model and conflict of interest."
Transactions on Information Systems
Security, vol. 2, pp. Pages 3 - 33, 1999.

[8] Moffett J., "Control Principles and Role
Hierarchies." presented at 3rd ACM
Workshop on Role Based Access Control
(RBAC), George Mason University, Fairfax,
VA, 1998.

[9] Brewer D. and M. Nash, "The Chinese Wall
Security Policy." presented at IEEE
Symposium on Security and Privacy,
Oakland, CA, 1989.

	I
	Introduction
	Organisational Control Principles
	Control Principles
	Common Control Principles

	Security Policies and Control Principles
	Separation of Duties in Role-Based Environments
	Separation of Duties - Related Work
	Role Hierarchies and their Impact on Separation of Duties

	Animating Separation of Duties in a Role-Based Environment.
	Using Prolog for the Simulation of Separation of Duties Properties.
	An Example System
	The SoDA (Separation of Duties Animator) tool

	Conclusion
	
	
	Technology
	Separation of Duties
	Other Control Principles

