

Proceedings 5th IEEE Workshop on Policies for Distributed Systems and Networks (Policy 2004)
IBM TJ Watson Research Centre, New York, USA, June 2004

A Goal-based Approach to Policy Refinement

Arosha K Bandara1 Emil C Lupu1 Jonathan Moffett2 Alessandra Russo1

 1: Department of Computing 2: Department of Computer Science
 Imperial College London, University of York
 180 Queen’s Gate, London SW7 2AZ, UK Heslington, York YO10 5DD, UK
 {bandara, e.c.lupu, ar3}@doc.ic.ac.uk jdm@cs.york.ac.uk

Abstract

As the interest in using policy-based approaches for
systems management grows, it is becoming increasingly
important to develop methods for performing analysis
and refinement of policy specifications. Although this is
an area that researchers have devoted some attention to,
none of the proposed solutions address the issue of
deriving implementable policies from high-level goals. A
key part of the solution to this problem is having the
ability to identify the operations, available on the
underlying system, which can achieve a given goal.

This paper presents an approach by which a formal
representation of a system, based on the Event Calculus,
can be used in conjunction with abductive reasoning
techniques to derive the sequence of operations that will
allow a given system to achieve a desired goal.
Additionally it outlines how this technique might be used
for providing tool support and partial automation for
policy refinement. Building on previous work on using
formal techniques for policy analysis, the approach
presented here applies a transformation of both policy
and system behaviour specifications into a formal
notation that is based on Event Calculus. Finally, it
shows how the overall process could be used in
conjunction with UML modelling and illustrates this by
means of an example.

1. Introduction

Policy based approaches to network and systems
management are of particular importance because they
allow the separation of the rules that govern the behaviour
of a system from the functionality provided by that
system. This means that it is possible to adapt the
behaviour of a system without the need to recode
functionality, and changes can be applied without
stopping the system. Research into policy based systems
management has focussed on languages for specifying
policies and architectures for managing and deploying

policies in distributed environments. However, whilst
there have been some promising developments in the area
of policy analysis, policy refinement remains a much-
neglected research problem.

Policy refinement is the process of transforming a
high-level, abstract policy specification into a low-level,
concrete one. Moffett and Sloman [1], identify the main
objectives of a policy refinement process as:
• Determine the resources that are needed to satisfy the

requirements of the policy.
• Translate high-level policies into operational policies

that the system can enforce.
• Verify that the lower level policies actually meet the

requirements specified by the high-level policy.

The first of these objectives involves mapping abstract
entities defined as part of a high-level policy to concrete
objects/devices that make up the underlying system. The
second specifies the need to ensure that any policies
derived by the refinement process be in terms of
operations that are supported by the underlying system.
The final objective requires that there be a process for
incrementally decomposing abstract requirements into
successively more concrete ones, ensuring that at each
stage the decomposition is correct and consistent.

Figure 1 presents an example scenario, originally
developed by Verma [2], where policy refinement might
be applied. Here, an enterprise network must implement
a Service Level Agreement (SLA) where one of the

Engineering
10.0.0.0/16

Research
9.0.0.0/16

Accounting
11.0.0.0/16

Core
8.0.0.0/16

ServerSite
12.0.0.0/16

eCommerce

CICS
Router 3

Router 1

Router 2

Router 4

9.0.0.3

8.0.0.3

8.0.0.4 12.0.0.4 12.0.0.3

12.0.0.4

8.0.0.2

11.0.0.210.0.0.1

8.0.0.1

Figure 1: Example enterprise network

1

clauses specifies that “WebServices Applications on the
eCommerce Server must receive Gold Quality of Service
(QoS)”. This requirement may be articulated as a policy
which states that “On demand, the network should be
configured to provide Gold QoS to WebServices
applications on the eCommerce Server”. Based on the
objectives mentioned above, the policy refinement
process should transform this high-level policy into
lower-level policies that take into account:
1. The specific routers that need to be configured to

handle the traffic for “WebServices applications on
the eCommerce Server”.

2. The set of operations, supported by these routers that
will meet the objective of “Gold QoS for WebServices
Applications on the eCommerce Server”.

And the overall process should meet the third objective
of ensuring that there is a means to verify that low-level
policies actually meet the requirement defined by the
high-level one. This example illustrates that the policy
refinement problem is actually composed of two parts:
1. Refinement of abstract entities into concrete

objects/devices.
2. Refinement of high-level goals into operations,

supported by the concrete objects/devices, that when
performed will achieve the high-level goal.

In order to solve these problems we need a formal
representation for objects, their behaviour and
organisation; a technique for refining high-level goals
into more concrete ones; and finally a means of inferring
the combination of operations that will achieve these
concrete goals. To this end we use the formalism
presented in [3] to model the behaviour and organisation
of the objects, together with the goal elaboration
technique developed by Darimont et al. [4], to refine
high-level goals into concrete ones. However, the refined
goals cannot be directly used in policies without first
identifying the operations that will achieve them. To
support this identification process, we introduce the
concept of a strategy, which is the mechanism by which a
given system can achieve a particular goal, i.e., a strategy
is the relationship between the system description and the
goal. By having a formal specification of the latter two
types of information we can use abductive reasoning to
infer the strategy.

In keeping with our previous work [3], we propose
that the entire formalism be implemented in Event
Calculus [5] since this is a particularly suitable notation
for modelling the event-driven nature of the systems we
are interested in; and also because this allows us to make
use of the mapping from the Ponder policy notation to
Event Calculus and the conflict detection techniques that
we have already developed. We use the goal elaboration

technique presented in [4] because it provides the concept
of domain-specific and domain-independent refinement
patterns, logically proven goal refinement templates that
can be easily reused. We can use such patterns to capture
the refinement of goals that are commonly encountered in
policy-based management, thus simplifying the
refinement process for the user.

The paper is organised as follows. Section 2 presents
background information on the techniques we are
building on to develop our policy refinement solution.
Section 3 presents the policy refinement approach
together with the details for the formal notation being
used; and Section 4 illustrates how the refinement
technique might be applied to the example described
above. In Section 5 we discuss the solution, its strengths
and weaknesses; and in Section 6 we compare this work
with existing research in the field. Finally Section 7
presents some conclusions together with directions for
future work.

2. Background

2.1 Goal Elaboration
The first component of the policy refinement process

to be considered is a technique for refining high-level
goals, defined during the requirements gathering process,
into concrete low-level policies. Figure 2 shows how the
requirements of a system might be refined from high-
level goals into implementable classes/modules. The
decomposition of a goal can be either conjunctive (i.e.
only by achieving all the sub-goals can we consider that
the higher-level goal is achieved) or disjunctive (i.e. by
achieving any one of the sub-goals we can consider the
higher-level goal is achieved).

Note the two distinct phases of the refinement process.
The first phase is one of goal refinement where the focus
is on translating abstract goals into operationalised goals.
An operationalised goal is one that has been assigned to
specific agent whose capabilities enable the system to
satisfy that goal. These goals are often referred to as the
System Requirements. Taking the example presented
previously, this process would transform the SLA
requirement of providing gold QoS for a particular class
of traffic into a set of goals that define the configuration
changes that must be applied to the routers in the
network. The second phase of the refinement process
takes these system requirements and maps them to
specific modules/operations that can be implemented
within the context of the system architecture. This phase
could be considered to be architectural or system design.
In our example, this would involve identifying the
operations to be invoked on the routers to achieve the
desired goal.

2

In the above scheme, each high-level goal is refined
into sub-goals, forming a goal refinement hierarchy where
the dependencies between the goals at the different levels
of refinement are based on the form of goal
decomposition used (AND/OR). Additionally there can
be dependencies between goals in different hierarchies.
The process of refinement will involve following a
particular path down the hierarchy, at each stage verifying
the feasibility of achieving the higher-level goal in terms
of the lower-level ones. If it is discovered that the goal
cannot be achieved, it is necessary to elaborate the
information at the higher-level such that suitable lower-
level goals can be derived.

Work done by Darimont et al. [4], proposes a formal
technique for elaborating goals grounded in Temporal
Logic. Called KAOS, this approach represents each goal
as a Temporal Logic rule and then makes use of
refinement patterns to decompose these goals into a set of
sub-goals that logically entail the original goal.
Additionally, this technique makes use of obstacles
(negated goals) which are then elaborated and resolved to
provide new goals. This process results in a set of refined
goals, and the identification of objects and operations that
might operationalise them. The final stage of the
procedure is to assign each of the refined goals to a
specific object/operation such that the final system will
meet the original requirements. Whilst the KAOS
approach does not provide any automated support for the
goal refinement process, it does define a library of
domain-specific and domain-independent refinement
patterns that have been logically proved.

A domain-independent goal refinement patterns uses
properties of temporal logic operators to provide a proven
relationship between a high level goal and a set of sub-
goals. For example, the transitivity property of the R
(R will eventually be true) operator provides the
following simple domain-independent goal refinement
pattern:

(P => R, R => Q) d P => Q

 If P is true then eventually R is true, AND

 If R is true then eventually Q is true, THEN

 If P is true then eventually Q is true.

In our example scenario, a domain-specific pattern
might be one that describes the sub-goals required to
guarantee QoS for a class of application traffic. The user
could then refine the goal instance “provide Gold QoS to
WebServices applications on the eCommerce Server”, by
instantiating this pattern with the Gold class of service
and the appropriate application type. Once the user has
specified appropriate sub-goals based on the particular
pattern, the specification is checked for inconsistencies.

Policy-based systems use rules to govern their
behavioural choices whilst satisfying the goals of the
system. Therefore a policy refinement technique must
provide a link between each goal and the underlying
system behaviour in order to derive the different ways in
which the system can satisfy the goal. This information
can then be encoded into policies that control the
behaviour of the system as needed. Whilst we can use the
KAOS approach to refine abstract goals into lower-level
ones, it does not provide a mechanism to connect the
goals with the behaviour description of the system.
Therefore, in this paper we show how the notation used
by KAOS can be combined with state charts, Event
Calculus and abductive reasoning to provide a practical
refinement technique.

GOAL SPECIFICATON

SYSTEM
REQUIREMENTS

PACKAGES/
MODULES

G
O

A
L

E
LA

B
O

R
A

TI
O

N
A

R
C

H
/S

Y
S

 D
E

S
IG

N

Component
Properties

Capabilities

Component
Properties

Capabilities

Component
Properties

Capabilities

Component
Properties

Capabilities

Component
Properties

Capabilities
Component
Properties

Capabilities

Component
Properties

Capabilities

Component
Properties

Capabilities

KEY: GOAL AND-
DECOMPOSITION

OR-
DECOMPOSITION

GOAL
ASSIGNMENT

Figure 2: Goal refinement hierarchy

2.2 Event Calculus
We propose to use Event Calculus (EC) as the

underlying formalism since it has well understood
semantics; supports all modes of logical reasoning,
including abduction; and the information we are
interested in modelling involves events and temporal
relationships. Event Calculus is a formal language for
representing and reasoning about dynamic systems.
Because the language supports a representation of time
that is independent of any events that might occur in the
system, it is a particularly useful way to specify a variety
of event-driven systems. Since its initial presentation [4],
a number of variations of the Event Calculus have been
presented in the literature [6]. In this work we use the
form presented in [7], consisting of (i) a set of time points
(that can be mapped to the non-negative integers); (ii) a
set of properties that can vary over the lifetime of the
system, called fluents; and (iii) a set of event types. In
addition the language includes a number of base
predicates, initiates, terminates, holdsAt, happens,
which are used to define some auxiliary predicates; and
domain independent axioms. These are summarised in
Figure 3.

3

This is the classical form of the Event Calculus where
theories are written using Horn clauses. The frame
problem is solved by circumscription, which allows the
completion of the predicates initiates, terminates and
happens, leaving open the predicates holdsAt,
initiallyTrue and initiallyFalse. This approach
allows the representation of partial domain knowledge
(e.g. the initial state of the system). Formulae derived by
the Event Calculus are in effect classically derived from
the circumscription of the EC representation. To provide
an implementation of such a calculus in Prolog, we use
pos and neg functors. The semantics of the Prolog
implementation assumes the Close World Assumption
(CWA) and models are essentially Herbrand models
where predicates are appropriately completed. The use of
pos and neg functions on the fluents allows us to keep
open the interpretation of fluents being true/false, in the
same way as circumscription does in the classical
representation. In this way we can guarantee that the
implementation of our EC is sound and complete with
respect to the classical EC formalisation. The
correspondence between the classical EC with
circumscription and the logic program implementation
can be found in [6].

The Event Calculus supports deductive, inductive and
abductive reasoning. Deduction uses the description of
the system behaviour together with the history of events
occurring in the system to derive the fluents that will hold
at a particular point in time. Induction aims to derive the
descriptions of the system behaviour from a given event
history and information about the fluents that hold at
different points of time. However, the reasoning
technique that is of particular interest to our work is
abduction. Given the descriptions of the behaviour of the
system, abduction can be used to determine the sequence
of events that need to occur such that a given set of
fluents will hold at a specified point in time.

3. Policy Refinement Approach

As mentioned previously, the KAOS approach
provides a technique for refining abstract goals into
lower-level ones. However these low-level goals cannot

be directly used in refined policies. To do this, it is
necessary to have a method for inferring the mechanism
by which the system can achieve a goal at a given
abstraction level.

At a given level of abstraction there will be some
description of the system (SD) and the goals (G) to be
achieved by the system. The relationship between the
system description and the goals is the Strategy (S), i.e.
the Strategy describes the mechanism by which the
system represented by SD achieves the goals denoted by
G. Formally this would be stated as:
 (1) - SDX, SX d GX

 X is a label denoting the abstraction level.

So, in our approach, it is expected that the user would
provide a representation of the system description, in
terms of the properties and behaviour of the components,
together with a definition of the goals that the system
must satisfy. The behaviour of the system is defined in
terms of the pre- and post-conditions of the operations
supported by the components, which the user can specify
using a high-level notation such as state charts. Since the
goals to be satisfied can be defined in terms of desired
system states, they can be specified in a notation similar
to that used to specify the post-conditions of the
operations.

Once the user has provided this information, it is first
necessary to transform it into a formal representation that
supports automated analysis. Given the relationship
between the system description, strategy and goal defined
in (1) above we then use abduction to programmatically
infer the strategies that will achieve a particular goal
(Figure 4). Additionally, we can use the properties of the
goal decomposition approach described previously to
decompose the system description and strategies as
follows:

Base predicates:
initiates(A,B,T) event A initiates fluent B for all time > T.
terminates(A,B,T) event A terminates fluent B for all time > T.
happens(A,T) event A happens at time point T
holdsAt(B,T) fluent B holds at time point T.
 This predicate is useful when defining static
 rules (e.g. state constraints)
initiallyTrue(B) fluent B is initially true.
initiallyFalse(B) fluent B is initially false.

GX

GX1 GX2

GOAL REFINEMENT

ABDUCTION

KEY:

Component
Properties

Capabilities

Component
Properties

Capabilities Component
Properties

Capabilities

Component
Properties

Capabilities

ABDUCTION
ABDUCTION

S2

S4 S5

Figure 3: Event Calculus predicates and axioms

Figure 4: Deriving strategies from goals
and system description

4

 (2) - GX1, GX2, ... , GXN d GX Goal Decomposition

 (3) - SDX1, SX1 d GX1
 SDX2, SX2 d GX2 ...
 SDXN, SXN d GXN (from 1)

This shows that if there is some combination of lower
level goals from which we can infer the original goal,
then for each of these sub-goals there must be a
corresponding strategy and system description
combination which will achieve it. Therefore, provided
the goal decomposition is correct, intuitively the
combination of the lower level system descriptions should
allow inference of the abstract system description and
similarly the combination of the lower level strategies
should allow inference of the abstract strategy.

As mentioned previously, the other component of the
refinement process is to refine abstract entities into
concrete objects/devices in the system. For example, in
the system illustrated in Figure 1, there might be an
abstract entity called “Network” that logically consists of
the “Engineering Network”, “Core Network” etc., where
each of these in turn consist of the routers and servers
within them. We propose that a domain hierarchy be
used to represent the relationships between the various
abstract entities and the low-level concrete objects [8].

Domains provide a means of grouping objects to
which policies apply and can be used to partition the
objects in large systems according to geographical
boundaries, object type, responsibility and authority.
Membership of a domain is explicit and not defined in
terms of a predicate on object attributes. An advantage of
specifying policy scope in terms of domains is that
objects can be added and removed from the domains to
which policies apply without having to change the
policies. The formal representation of the domain
structure is as shown in [3].

In order to implement the approach outlined above, it
is necessary to have a formal representation of the system

description; and the strategies and goals. However, for
the implementation to be usable, it would be ideal to be
able to model the systems in a high-level notation and
translate this into Event Calculus for analysis purposes.
UML would be well suited for this purpose since it is
widely used and is supported by many commercial tools.

This rest of this section outlines how UML would
represent each of the types of information that need to be
modelled together and describes how they can be
translated into Event Calculus. The formal language
being used is based on that described in [3], where in
addition to the base predicates and axioms of Event
Calculus we make use of the function symbols shown in
Table 1.

3.1 System Description
The system description models the objects in the

system in terms of their behaviour. The notation used to
formally model the behaviour of objects is identical to
that described in [3]. Using this notation, and building on
the example used previously, it is possible to illustrate the
use of these rules for modelling system behaviour. So, let
us say there is an object of type DiffServRouter in the
example system. This type has attributes to hold the IP
interfaces and actions to configure various parameters of
the router, which might be represented in UML as a class
diagram. The actions for the DiffServRouter type can be
specified in a UML state chart representation as shown in
Figure 5.

It is possible to transform this state chart into the Event
Calculus notation presented previously where the input
shown on each transition arrow is the action being
performed. For transition between different states, the
current state values become the PostFalse fluents; any
actions associated with the transition and next state values
become the PostTrue fluents; and the current state values
become the PreConditions. Self-transitions should not
specify the current state as PostFalse fluents. So
following this scheme, the transition labelled (**) in
Figure 5 would be represented in the Event Calculus as
follows:

Table 1: Function symbols.

Symbol Description
state(Obj, VO, Value) Represents the value of a variable of an object in the system. It can be

used in an initiallyTrue predicate to specify the initial state of the
system and also as part of rules that define the effect of actions.

op(Obj, Action(VP)) Used to denote the operations specified in an action event (see below)
systemEvent(Event) Represents any event that is generated by the system at runtime. The

Event argument specified in this term can be any application specific
predicate or function symbol.

doAction(ObjSubj, op(ObjTarg, Action(VP))) Represents the event of the action specified in the operation term
being performed by the subject, ObjSubj, on the target object,
ObjTarg.

5

«goal»
GX

«goal»
GX1

«goal»
GX2

{and}

<<reduces>>

<<reduces>> <<reduces>>

state(R, dscp, DSCP)

state(R, meterType, Meter)

state(R, meterType, Meter)
state(R, rateLimit, InRate)

state(R, meterType, Meter)
state(R, rateLimit, InRate)

state(R, overflow, OFPolicy)
state(R, schedulerType, Scheduler)

state(R, outRate, OutRate)

state(R, schedulerType, Scheduler)

R.setDSCP(DSCP)

R.setMeter(Meter)

R.setScheduler(Scheduler)

R.setOverflow(OFPolicy)
R.setOutRate(OutRate)

(**) R.setRateLimit(InRate)

Figure 6: UML representation of the
AND-decomposition of a goal

initiates(
 doAction(_, op(diffServRouter,
 setRateLimit(inRate))),
 state(diffServRouter,rateLimit, inRate), T)
 holdsAt(pos(state(diffServRouter,
 meterType, Meter)), T).

The above rule also shows how we make use of the
pos() function as described in Section 2.2. Note that,
whilst we have shown the details of the Event Calculus
representation of the system organisation and behaviour
models, it is not necessary for the user to directly specify
anything in the formal notation. Instead they would use
UML class diagrams, state charts together with a domain
model chart and the system will generate the Event
Calculus code required for the refinement procedure.

3.2 Goals
A UML profile for modelling goals and goal

refinement patterns described in the KAOS approach has
already been developed and is presented in [9]. Figure 6
shows how an AND-decomposition of a goal would be
represented in this notation. The profile defines a number
of attributes for the <<goal>> stereotype, including one to
hold the temporal logic representation of the goal.
However, in order to support the formal analysis required
for validating the goal refinements, it is still necessary to
map the temporal logic formalism of KAOS into Event
Calculus and describe a mechanism for verifying the
correctness of a goal refinement.

The goal refinement patterns provided by KAOS make
use of some of the temporal logic operators described in
[10]:

X X holds in the current state

 X, X will eventually hold
 X, X held at some time in the past

YW X, Y holds unless X holds

The Event Calculus representation for each of these
temporal operators is shown in Figure 7.

The UML profile in [9] also describes a high-level
notation for representing these patterns, each of which
can be mapped into a set of temporal logic formulas.
These can be used by our system to guide the user in
defining the sub-goals for a given goal and also to
validate the correctness of the sub-goals. For example,
applying the (P => R, R => Q) d P => Q pattern
would present the user with a template of the following
form:

 If P is true then eventually R is true, AND
 If R is true then eventually Q is true.

It would be up to the user to insert the appropriate
value for the missing goal, R. The formal version of the
goals would then be mapped into Event Calculus and the
system would assert each of the sub-goals into the overall
formal specification and attempt to prove the following
properties of the refinement:

1. G1, G2, .. Gn d G (entailment): validated by
trying prove G after asserting all the sub-goals

2. ∀i: ∧ji Gj S G (minimality): validated by
checking the entailment property for each subset
of the sub-goals.

Figure 5: UML state chart for DiffServRouter type

 X -> ∃T: holdsAt(X, T) ∧ T=now.

 X -> ∃T,T’: holdsAt(X, T’) ∧ T=now ∧
 T’>T.

 X -> ∃T,T’: holdsAt(X, T’) ∧ T=now ∧
 T’<T.

 Y W X -> ∀T: holdsAt(Y, T)
 ¬holdsAt(X, T)
 T≤T’<T’’ ∧ T=now.

Figure 7: Event Calculus representation
of temporal logic operators

6

3. G1, G2, …, Gn S false (consistency): validated
by making sure that asserting the sub-goals does
not nullify the entailment properties of any
existing goal refinements.

If it is not possible to show the entailment property for
the goal refinement, this indicates that either there is a
missing sub-goal or the wrong goal refinement pattern has
been applied.

3.3 Strategies
So far we have discussed the types of information that

must be specified by the user for the refinement
procedure to work. However, strategies do not fall into
this category since they will be actually be derived by the
abductive analysis procedure used in the refinement
approach. Therefore, it is expected that the formal
representation of a strategy is actually determined by the
representation of the system behaviour and goals defined
above.

As mentioned previously, a strategy describes the
mechanism by which the system can achieve a given goal
and is therefore defined by a set of operations to be
performed sequentially or in parallel. Specifically, the
strategy is defined using a conjunction of
happens(doAction(...), T) predicates having a
relationship between the time values that corresponds to
the order in which the actions should be performed. For
example, a strategy that defines Obj1 performs
Obj2.Action1 and Obj2 perfoms Obj3.Action2 in parallel,
followed by Obj2 performing Obj3.Action3 would be
represented in our formalism as:

 happens(doAction(Obj1, op(Obj2, Action1)), T0),
 happens(doAction(Obj1, op(Obj3, Action2)), T0),
 happens(doAction(Obj2, op(Obj3, Action3)), T1),
 T0<T1.

In the interests of usability, it would be better if
strategies are presented to the user in a high-level form.
So, given that strategies define a method invocation trace
for achieving a given goal, we can represent them in

UML using a message sequence chart. The UML model
for the example above is shown in Figure 8.

A strategy is considered to be abstract if any of the
actions defined in it is a method defined as part of an
abstract entity. High-level, abstract policies can be
defined using such strategies in the action clause. If the
strategy is not abstract, it can be used in a concrete,
implementable policy.

4. Policy Refinement: An Example

In this section we describe how the formal
representation and approach presented in this paper can
be used to refine Service Level Agreement policies for
the example system shown in Figure 1. Figure 9a shows
the UML model for the objects in this system, including
the abstract entities, Network and Router. The
behavioural model is as shown in Figure 5. The high
level policy we wish to refine is stated as follows:

On demand the network should provide Gold quality of service to
web services application traffic on the eCommerce server.

Obj1 Obj2 Obj3

Action1

Action3

Action2

The goal we are interested in achieving is to provide
gold QoS for network traffic to a particular application on
the eCommerce server. The goal hierarchy for reducing
this goal is shown in Figure 9b and the temporal logic
representation for some of these sub-goals is presented
below (tfc1 denotes the Traffic Class relevant to the
goal):

Figure 8: UML sequence chart for a strategy
 G1 - send(pkt, tfc1) ⇒ qos(pkt,gold).

 G11 - send(pkt, tfc1) ⇒
 routed(pkt, R, tfc1).

 G12 - routed(pkt, R, tfc1) ⇒
 detected(pkt, R, tfc1).

 G13 - detected(pkt, R, tfc1) ⇒
 configured(R, tfc1, gold).

 G14 - configured(R, tfc1, gold) ⇒
 qos(pkt, gold).

 G131 - detected(pkt, R, tfc1) ⇒
 routerParmsKnown(R, gold, parms).

 G132 - routerParmsKnown(R, gold, parms) ⇒
 parmsSet(R, gold, parms).

 G133 - parmsSet(R, gold, parms) ⇒
 configured(R, tfc1, gold).

At each level of goal reduction, we use abduction to
determine the strategy that will achieve the sub-goals.
The absence of a strategy indicates that there is some
information missing in the system description at one of

7

the levels of abstraction. For example, at the top level of
this example, there is no abducible strategy for the goal
“G13 - Router Configured for Gold Qos”. This can be
addressed by extending the abstract Router object with a
method configureQoS(gold). Similarly, the strategy for
the lower level goal, “G132 - Set the router parameters”
can be achieved by defining the behaviour of the
setParms(…) method of the Router object appropriately.
Once these modifications have been made, the abduction
process will yield abstract strategies (since the operations
derived belong to abstract entities) for achieving each of
the goals. In order to realise a concrete strategy, it is
necessary to refine the goals further, into the lowest level
ones shown in Figure 9b.

Now, attempting to abduce the lowest level goals
yields a set of concrete operations that configure the
DiffServRouter object in the appropriate way:

?- showStrategy([
 state(diffServRouter, dscp, Var_DSCP),
 state(diffServRouter, meter, Var_Meter), ..
 state(diffServRouter, ofp, Var_OFP]).

 1 - happens(doAction(_, diffServRouter,
 setDSCP(Var_DSCP), 0),
 2 - happens(doAction(_, diffServRouter,
 setMeter(Var_Meter), 0),
 ...
 6 - happens(doAction(_, diffServRouter,
 setOverflow(Var_OFP), 2).

Having identified the actions required in the lower
level policy, all that remains is to refine the subject and

target entities. In the original high-level policy we can
identify the target entity as “the network”. For the policy
we are refining, we are only concerned with objects that
are of type DiffServRouter (since this is the only object
type in the policy’s action clause). Therefore the refined
target objects can be determined by traversing the domain
hierarchy and selecting the objects of type
DiffServRouter.

For ease of future specification, we can create a new
domain DiffServRouters, and assign each of these target
objects as members. Given there is no information about
the subject entity in the top-level policy, it requires the
user to apply some application specific knowledge to
identify the correct subject for the low-level policy as
DiffServConfigMgr. The event mentioned in the high-
level policy is “on Demand” and given that there is no
information in the system description about how this
might be refined; it is up to the user to specify the lower
level event to be used by the policy as
adminRequest(Parms). This yields the final low-level
policy as:

 oblig /SLA/ConfigGoldQoS {
 on adminRequest(Parms);
 subject s = /PMA/DiffServeConfigMgr;
 target t = /DiffDServRouters/;
 do (t.setDSCP(Parms.DSCP) &&
 t.setMeter(Parms.Meter)) ->
 ...
 t.setOverflow(Parms.OFP);
 }

8

5. Discussion

The approach described above provides a means of
determining the strategy for achieving a particular goal,
and identifying the specific objects in the system that are
required to execute the strategy. However, there is no
mention of how to decide whether a particular strategy
should be specified as a policy, as opposed to directly
implementing as system functionality. Using a policy
specification differs from a direct implementation in that
a policy controls the required functionality rather than
implementing it directly. Therefore policies provide a
great deal of flexibility in situations where there a several
alternative strategies for achieving a goal, and it would be
useful to dynamically switch between these strategies
depending on the run-time state of the system. For
instance, in the example scenario outlined above, the
Gold QoS requirement might be met by either configuring
the DiffServRouters in the manner described, or by
dropping packets belonging to other applications. In this
situation, two alternative low-level policies could be
defined such that the strategy most appropriate for a given
situation is used.

The exact circumstance in which a strategy should be
encoded as a policy, rather than system functionality, will
depend on the particular application domain. So, whilst
there is no obvious way to automate this decision, we
propose the following guidelines to determine the
situations in which a policy-based implementation would
be appropriate:

1. If the goal refinement process results in a
disjunction of sub-goals (i.e. the high-level goal
can be achieved by one of an OR-decomposed set
of sub-goals), the strategies derived for each of
the sub-goals could be encoded as policies.

2. If the system supports multiple strategies for
achieving a given goal, each of these strategies
could be encoded in a separate policy.

3. If a strategy has parameter values that the user is
interested in changing at a future point in time,
implementing such a strategy in a policy will
provide the necessary flexibility to do this.

These guidelines should apply to all types of
application. Additionally there may be application-
specific guidelines that further guide the user in their
decision to apply policies.

The policy refinement process described in this paper
is built on a systematic, formal approach to refining goals
thus ensuring that the strategies derived actually meet the
requirements of the high-level policy. Also, the
derivation of these strategies makes use of a description
of the system, which means the policies derived are

enforceable by the system. Using domain hierarchies to
model the relationships between abstract entities and
concrete objects, together with type information, allows
the system to identify the objects that may be required to
execute the strategies. These features illustrate how this
solution satisfies the principal objectives of a policy
refinement process identified in [1]. Additionally, by
implementing the process using a formal representation it
is possible to automate parts of the refinement process.

Automation of the technique presented here requires a
tool that allows the user to specify the system behaviour
and goal information in UML and then translates this
representation into Event Calculus for analysis. Also, the
results of the analysis should be presented in an easy to
understand form. To achieve this, we envisage the final
tool solution will integrate a UML editor, such as
ArgoUML, with a Prolog system implementing an
abductive reasoning engine. For the latter part of the
solution, we will use the A-System with SICStus Prolog
[11]. This latter part of the architecture has already been
used to develop the policy analysis approach presented
previously [5]. It is expected that this refinement and
analysis tool will be integrated with a policy management
system such as the Ponder Toolkit [8]. Development of
an integrated refinement and analysis toolkit will form the
core of our future work.

An important consideration when developing any
formal technique is to ensure that the implementation is
decidable and computationally feasible. In the Prolog
implementation of the example, we have been able to
ensure this by limiting ourselves to stratified logic
programs. This permits a constrained use of recursion
and negation while disallowing those combinations that
lead to undecidable programs [12]. It is anticipated that
we can remain within the realms of stratified logic
programs for most applications of our technique. This
would be advantageous since there are numerous studies
that identify stratified logic as a class of first order logic
that supports logic programs that are decidable [13, 14].
Moreover, such programs are decidable in polynomial
time [14, 15]. A more detailed analysis of the
computational complexity and expressive power of
stratified logic can be found in [14].

One limitation of the work presented is that it does not
provide a means of deriving the parameter values required
by the operations to achieve a particular goal. Such a
capability would be particularly useful when refining
network management policies, where for example there
might be a requirement that the network configure itself
to provide optimal bandwidth utilisation by calculating
the appropriate values for parameters like the input rate of
the DiffServ meters. As part of our ongoing research, we
plan to investigate the possibility of integrating constraint

9

logic programming techniques to provide such
capabilities. Another limitation is that at present we treat
all the goals together, only accounting for whether their
decomposition is based on the AND/OR connective.
However, there may be situations where it is necessary to
account for an explicit temporal ordering of the goals
when performing refinement. Whilst this may be easily
handled by making use of the time information provided
by the Event Calculus representation, the implications
must be fully considered and this requires further
investigation.

6. Related Work

Work by Kelly [17], introduces the idea of annotating
a goal refinement hierarchy with strategies for
representing safety cases. However, in the context of
safety case representation the strategies document the
justification for the lower-level goals achieving the high-
level goal. In contrast, the goal refinement approach used
in this paper uses logical proofs to justify the validity of
the goal decomposition and strategies are used to
represent the mechanism by which the system can achieve
a given goal. Therefore strategies provide the
relationship between the system architecture and the
goals.

In the wider software engineering context, there is a
body of work on the synthesis of reactive systems [18],
which aims to derive the system behaviour description
based on temporal formulae that describe the output of
the system. This is quite different from the approach
presented in this paper, since our objective is to simply
identify the sequences of actions, from the given system
description, that will achieve a particular goal.

There are few examples of practical approaches for
policy refinement. One such example is described in
work done at Hewlett-Packard Laboratories, which
outlines a policy-authoring environment that provides a
policy wizard tool, called POWER, for refining policies
[19]. Here, a domain expert first develops a set of policy
templates, expressed as Prolog programs, and the policy
authoring tools have an integrated inference engine that
interprets these programs to guide the user through the
refinement process. A major limitation of this approach
is the absence of any analysis capabilities to evaluate the
consistency of the refined policies. Also, the POWER
approach depends on the domain expert having a detailed
understanding of the entire system to develop a usable
policy template. The refinement approach outlined in this
paper avoids these problems by not only incorporating a
complete analysis technique but also supporting abductive
reasoning for deriving the action sequences required to
achieve a goal.

7. Conclusions

In this paper we have presented an approach to policy
refinement that allows the inference of the low-level
actions that satisfy a high-level goal by making use of
existing techniques in goal-based requirements
elaboration and the Event Calculus. We have ensured the
usability of the approach by showing how the user can
specify the system using UML and how this specification
can be translated into the formal representation for
analysis. We have shown how the approach provides
automation support for the refinement process when
given a specification of the system behaviour and the
goals to be satisfied. In order to relate the system
behaviour specification with the goals, we introduce the
concept of strategies and show how these can be used in
the specification of policies.

 There is ongoing work to investigate how the
presented formalism can be extended to support the
identification of the events and constraints to be included
in the low-level policies. However, the immediate focus
of our future work is to develop adequate tool support
that uses the technique described here together with the
analysis approach presented previously [3] to provide a
comprehensive environment for policy specification.
Additionally we will be investigating the use of the
technique described here for refining and analysing traffic
management policies for network QoS management. The
areas of further investigation identified in the discussion
will also be addressed as part of this work.

Acknowledgements
We acknowledge financial support for this work from

the EPSRC (Grant Nos: GR/R31409/01 and
GR/S79985/01) and CISCO Systems Inc. Additionally,
we would like to thank Morris Sloman and Naranker
Dulay for their valuable feedback during the preparation
of this paper.

References
[1] J. Moffett and M. S. Sloman, "Policy Hierarchies for
Distributed Systems Management," IEEE JSAC, vol. 11, pp.
1404-14, 1993.
[2] D. C. Verma, Policy-Based Networking: Architecture and
Algorithms: New Riders Publishing, 2001.
[3] A. K. Bandara, E. C. Lupu, and A. Russo, "Using Event
Calculus to Formalise Policy Specification and Analysis,"
presented at 4th IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2003), Lake Como, Italy, 2003.
[4] R. Darimont and A. van Lamsweerde, "Formal Refinement
Patterns for Goal-Driven Requirements Elaboration," 4th ACM
Symposium on the Foundations of Software Engineering
(FSE4), pp. 179-190, 1996.
[5] R. A. Kowalski and M. J. Sergot, "A logic-based calculus
of events," New Generation Computing, vol. 4, pp. 67-95, 1986.

10

[6] R. Miller and M. Shanahan, "The Event Calculus in
Classical Logic Alternative Axiomatisations," in Computational
Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II., vol. 2048, Lecture Notes in
Computer Science, A. Kakas and F. Sadri, Eds.: Springer, 1999,
pp. 452-490.
[7] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer, "An
Abductive Approach for Analysing Event-Based Requirements
Specifications," presented at 18th Int. Conf. on Logic
Programming (ICLP), Copenhagen, Denmark, 2002.
[8] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M.
Sloman, "Tools for Domain-based Policy Management of
Distributed Systems," presented at Network Operations and
Management Symposium (NOMS 2002), Frorence, Italy, 2002a.
[9] W. J. Heaven and A. Finkelstein, "A UML Profile to
Support Requirements Engineering with KAOS," IEE
Proceedings - Software, 2003.
[10] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems: Springer-Verlag, 1992.
[11] B. van Nuffelen and A. Kakas, "A-System : Programming
with abduction," presented at Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), 2001.
[12] K. R. Apt, H. A. Blair, and A. Walker, "Towards a Theory
of Declarative Knowledge," in Foundations of Deductive
Databases, J. Minker, Ed. San Mateo, CA: Morgan Kaufmann,
1988, pp. 89-148.

[13] G. Jager and R. F. Stark, "The Defining Power of Stratified
and Hierarchical Logic Programs," Journal of Logic
Programming, vol. 15, pp. 55-77, 1993.
[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov,
"Complexity and Expressive Power of Logic Programming,"
presented at 12th Annual IEEE Conf. on Computational
Complexity (CCC'97), Ulm, Germany, 1997.
[15] S. Jajodia, P. Samarati, and V. S. Subrahmanian, "A
Logical Language for Expressing Authorisations," presented at
IEEE Symposium on Security and Privacy, Oakland, USA,
1997a.
[16] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H.
Turner, "Nonmonotonic causal theories," Artificial Intelligence,
vol. To appear, 2003.
[17] T. Kelly, "Arguing Safety – A Systematic Approach to
Managing Safety Cases," in Department of Computer Science.
York: University of York, 1998, pp. 341.
[18] A. Pneuli and R. Rosner, "On the Synthesis of a Reactive
Module," presented at ACM Symposium on the Principles of
Programming Languages (POPL'89), pp. 179-190, 1989.
[19] M. Casassa Mont, A. Baldwin, and C. Goh, "POWER
Prototype: Towards Integrated Policy-Based Management," HP
Laboratories Bristol, Bristol, UK October 1999.

11

	A Goal-based Approach to Policy Refinement
	1. Introduction
	2. Background
	2.1 Goal Elaboration
	2.2 Event Calculus

	3. Policy Refinement Approach
	3.1 System Description
	3.2 Goals
	3.3 Strategies

	4. Policy Refinement: An Example
	5. Discussion
	6. Related Work
	7. Conclusions
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

