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Abstract 
 

As the interest in using policy-based approaches for 
systems management grows, it is becoming increasingly 
important to develop methods for performing analysis 
and refinement of policy specifications.  Although this is 
an area that researchers have devoted some attention to, 
none of the proposed solutions address the issue of 
deriving implementable policies from high-level goals.  A 
key part of the solution to this problem is having the 
ability to identify the operations, available on the 
underlying system, which can achieve a given goal. 

This paper presents an approach by which a formal 
representation of a system, based on the Event Calculus, 
can be used in conjunction with abductive reasoning 
techniques to derive the sequence of operations that will 
allow a given system to achieve a desired goal.   
Additionally it outlines how this technique might be used 
for providing tool support and partial automation for 
policy refinement.  Building on previous work on using 
formal techniques for policy analysis, the approach 
presented here applies a transformation of both policy 
and system behaviour specifications into a formal 
notation that is based on Event Calculus.  Finally, it 
shows how the overall process could be used in 
conjunction with UML modelling and illustrates this by 
means of an example. 
 

1. Introduction 

Policy based approaches to network and systems 
management are of particular importance because they 
allow the separation of the rules that govern the behaviour 
of a system from the functionality provided by that 
system.  This means that it is possible to adapt the 
behaviour of a system without the need to recode 
functionality, and changes can be applied without 
stopping the system.  Research into policy based systems 
management has focussed on languages for specifying 
policies and architectures for managing and deploying 

policies in distributed environments.  However, whilst 
there have been some promising developments in the area 
of policy analysis, policy refinement remains a much-
neglected research problem. 

Policy refinement is the process of transforming a 
high-level, abstract policy specification into a low-level, 
concrete one.  Moffett and Sloman [1], identify the main 
objectives of a policy refinement process as: 
• Determine the resources that are needed to satisfy the 

requirements of the policy. 
• Translate high-level policies into operational policies 

that the system can enforce. 
• Verify that the lower level policies actually meet the 

requirements specified by the high-level policy. 

The first of these objectives involves mapping abstract 
entities defined as part of a high-level policy to concrete 
objects/devices that make up the underlying system.  The 
second specifies the need to ensure that any policies 
derived by the refinement process be in terms of 
operations that are supported by the underlying system.  
The final objective requires that there be a process for 
incrementally decomposing abstract requirements into 
successively more concrete ones, ensuring that at each 
stage the decomposition is correct and consistent. 

Figure 1 presents an example scenario, originally 
developed by Verma [2], where policy refinement might 
be applied.  Here, an enterprise network must implement 
a Service Level Agreement (SLA) where one of the 
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clauses specifies that “WebServices Applications on the 
eCommerce Server must receive Gold Quality of Service 
(QoS)”.  This requirement may be articulated as a policy 
which states that “On demand, the network should be 
configured to provide Gold QoS to WebServices 
applications on the eCommerce Server”.  Based on the 
objectives mentioned above, the policy refinement 
process should transform this high-level policy into 
lower-level policies that take into account: 
1. The specific routers that need to be configured to 

handle the traffic for “WebServices applications on 
the eCommerce Server”. 

2. The set of operations, supported by these routers that 
will meet the objective of “Gold QoS for WebServices 
Applications on the eCommerce Server”. 

And the overall process should meet the third objective 
of ensuring that there is a means to verify that low-level 
policies actually meet the requirement defined by the 
high-level one.  This example illustrates that the policy 
refinement problem is actually composed of two parts: 
1. Refinement of abstract entities into concrete 

objects/devices. 
2. Refinement of high-level goals into operations, 

supported by the concrete objects/devices, that when 
performed will achieve the high-level goal. 

In order to solve these problems we need a formal 
representation for objects, their behaviour and 
organisation; a technique for refining high-level goals 
into more concrete ones; and finally a means of inferring 
the combination of operations that will achieve these 
concrete goals. To this end we use the formalism 
presented in [3] to model the behaviour and organisation 
of the objects, together with the goal elaboration 
technique developed by Darimont et al. [4], to refine 
high-level goals into concrete ones.  However, the refined 
goals cannot be directly used in policies without first 
identifying the operations that will achieve them.  To 
support this identification process, we introduce the 
concept of a strategy, which is the mechanism by which a 
given system can achieve a particular goal, i.e., a strategy 
is the relationship between the system description and the 
goal.  By having a formal specification of the latter two 
types of information we can use abductive reasoning to 
infer the strategy. 

In keeping with our previous work [3], we propose 
that the entire formalism be implemented in Event 
Calculus [5] since this is a particularly suitable notation 
for modelling the event-driven nature of the systems we 
are interested in; and also because this allows us to make 
use of the mapping from the Ponder policy notation to 
Event Calculus and the conflict detection techniques that 
we have already developed.  We use the goal elaboration 

technique presented in [4] because it provides the concept 
of domain-specific and domain-independent refinement 
patterns, logically proven goal refinement templates that 
can be easily reused.  We can use such patterns to capture 
the refinement of goals that are commonly encountered in 
policy-based management, thus simplifying the 
refinement process for the user. 

The paper is organised as follows.  Section 2 presents 
background information on the techniques we are 
building on to develop our policy refinement solution.  
Section 3 presents the policy refinement approach 
together with the details for the formal notation being 
used; and Section 4 illustrates how the refinement 
technique might be applied to the example described 
above.  In Section 5 we discuss the solution, its strengths 
and weaknesses; and in Section 6 we compare this work 
with existing research in the field.  Finally Section 7 
presents some conclusions together with directions for 
future work. 

2. Background  

2.1 Goal Elaboration 
The first component of the policy refinement process 

to be considered is a technique for refining high-level 
goals, defined during the requirements gathering process, 
into concrete low-level policies.  Figure 2 shows how the 
requirements of a system might be refined from high-
level goals into implementable classes/modules. The 
decomposition of a goal can be either conjunctive (i.e. 
only by achieving all the sub-goals can we consider that 
the higher-level goal is achieved) or disjunctive (i.e. by 
achieving any one of the sub-goals we can consider the 
higher-level goal is achieved).  

Note the two distinct phases of the refinement process.  
The first phase is one of goal refinement where the focus 
is on translating abstract goals into operationalised goals.  
An operationalised goal is one that has been assigned to 
specific agent whose capabilities enable the system to 
satisfy that goal.  These goals are often referred to as the 
System Requirements.  Taking the example presented 
previously, this process would transform the SLA 
requirement of providing gold QoS for a particular class 
of traffic into a set of goals that define the configuration 
changes that must be applied to the routers in the 
network.  The second phase of the refinement process 
takes these system requirements and maps them to 
specific modules/operations that can be implemented 
within the context of the system architecture.  This phase 
could be considered to be architectural or system design.  
In our example, this would involve identifying the 
operations to be invoked on the routers to achieve the 
desired goal. 
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In the above scheme, each high-level goal is refined 
into sub-goals, forming a goal refinement hierarchy where 
the dependencies between the goals at the different levels 
of refinement are based on the form of goal 
decomposition used (AND/OR).  Additionally there can 
be dependencies between goals in different hierarchies.  
The process of refinement will involve following a 
particular path down the hierarchy, at each stage verifying 
the feasibility of achieving the higher-level goal in terms 
of the lower-level ones.  If it is discovered that the goal 
cannot be achieved, it is necessary to elaborate the 
information at the higher-level such that suitable lower-
level goals can be derived. 

Work done by Darimont et al. [4], proposes a formal 
technique for elaborating goals grounded in Temporal 
Logic.  Called KAOS, this approach represents each goal 
as a Temporal Logic rule and then makes use of 
refinement patterns to decompose these goals into a set of 
sub-goals that logically entail the original goal.  
Additionally, this technique makes use of obstacles 
(negated goals) which are then elaborated and resolved to 
provide new goals.  This process results in a set of refined 
goals, and the identification of objects and operations that 
might operationalise them.  The final stage of the 
procedure is to assign each of the refined goals to a 
specific object/operation such that the final system will 
meet the original requirements. Whilst the KAOS 
approach does not provide any automated support for the 
goal refinement process, it does define a library of 
domain-specific and domain-independent refinement 
patterns that have been logically proved. 

A domain-independent goal refinement patterns uses 
properties of temporal logic operators to provide a proven 
relationship between a high level goal and a set of sub-
goals.  For example, the transitivity property of the  R 
(R will eventually be true) operator provides the 
following simple domain-independent goal refinement 
pattern: 

(P =>  R, R =>  Q) d P =>  Q 

 

 If P is true then eventually R is true, AND 

 If R is true then eventually Q is true, THEN 

 If P is true then eventually Q is true. 

In our example scenario, a domain-specific pattern 
might be one that describes the sub-goals required to 
guarantee QoS for a class of application traffic.  The user 
could then refine the goal instance “provide Gold QoS to 
WebServices applications on the eCommerce Server”, by 
instantiating this pattern with the Gold class of service 
and the appropriate application type.  Once the user has 
specified appropriate sub-goals based on the particular 
pattern, the specification is checked for inconsistencies.   

Policy-based systems use rules to govern their 
behavioural choices whilst satisfying the goals of the 
system.  Therefore a policy refinement technique must 
provide a link between each goal and the underlying 
system behaviour in order to derive the different ways in 
which the system can satisfy the goal.  This information 
can then be encoded into policies that control the 
behaviour of the system as needed.  Whilst we can use the 
KAOS approach to refine abstract goals into lower-level 
ones, it does not provide a mechanism to connect the 
goals with the behaviour description of the system.  
Therefore, in this paper we show how the notation used 
by KAOS can be combined with state charts, Event 
Calculus and abductive reasoning to provide a practical 
refinement technique.  
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2.2 Event Calculus 
We propose to use Event Calculus (EC) as the 

underlying formalism since it has well understood 
semantics; supports all modes of logical reasoning, 
including abduction; and the information we are 
interested in modelling involves events and temporal 
relationships.  Event Calculus is a formal language for 
representing and reasoning about dynamic systems.  
Because the language supports a representation of time 
that is independent of any events that might occur in the 
system, it is a particularly useful way to specify a variety 
of event-driven systems.  Since its initial presentation [4], 
a number of variations of the Event Calculus have been 
presented in the literature [6].  In this work we use the 
form presented in [7], consisting of (i) a set of time points 
(that can be mapped to the non-negative integers); (ii) a 
set of properties that can vary over the lifetime of the 
system, called fluents; and (iii) a set of event types.  In 
addition the language includes a number of base 
predicates, initiates, terminates, holdsAt, happens, 
which are used to define some auxiliary predicates; and 
domain independent axioms.  These are summarised in 
Figure 3. 
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This is the classical form of the Event Calculus where 
theories are written using Horn clauses. The frame 
problem is solved by circumscription, which allows the 
completion of the predicates initiates, terminates and 
happens, leaving open the predicates holdsAt, 
initiallyTrue and initiallyFalse. This approach 
allows the representation of partial domain knowledge 
(e.g. the initial state of the system). Formulae derived by 
the Event Calculus are in effect classically derived from 
the circumscription of the EC representation. To provide 
an implementation of such a calculus in Prolog, we use 
pos and neg functors. The semantics of the Prolog 
implementation assumes the Close World Assumption 
(CWA) and models are essentially Herbrand models 
where predicates are appropriately completed. The use of 
pos and neg functions on the fluents allows us to keep 
open the interpretation of fluents being true/false, in the 
same way as circumscription does in the classical 
representation. In this way we can guarantee that the 
implementation of our EC is sound and complete with 
respect to the classical EC formalisation. The 
correspondence between the classical EC with 
circumscription and the logic program implementation 
can be found in [6].   

The Event Calculus supports deductive, inductive and 
abductive reasoning.  Deduction uses the description of 
the system behaviour together with the history of events 
occurring in the system to derive the fluents that will hold 
at a particular point in time.  Induction aims to derive the 
descriptions of the system behaviour from a given event 
history and information about the fluents that hold at 
different points of time.  However, the reasoning 
technique that is of particular interest to our work is 
abduction. Given the descriptions of the behaviour of the 
system, abduction can be used to determine the sequence 
of events that need to occur such that a given set of 
fluents will hold at a specified point in time. 

3. Policy Refinement Approach 

As mentioned previously, the KAOS approach 
provides a technique for refining abstract goals into 
lower-level ones.  However these low-level goals cannot 

be directly used in refined policies.  To do this, it is 
necessary to have a method for inferring the mechanism 
by which the system can achieve a goal at a given 
abstraction level.   

At a given level of abstraction there will be some 
description of the system (SD) and the goals (G) to be 
achieved by the system.   The relationship between the 
system description and the goals is the Strategy (S), i.e. 
the Strategy describes the mechanism by which the 
system represented by SD achieves the goals denoted by 
G.  Formally this would be stated as: 
  (1) - SDX, SX d GX  
  
   X is a label denoting the abstraction level. 
 

So, in our approach, it is expected that the user would 
provide a representation of the system description, in 
terms of the properties and behaviour of the components, 
together with a definition of the goals that the system 
must satisfy.  The behaviour of the system is defined in 
terms of the pre- and post-conditions of the operations 
supported by the components, which the user can specify 
using a high-level notation such as state charts.  Since the 
goals to be satisfied can be defined in terms of desired 
system states, they can be specified in a notation similar 
to that used to specify the post-conditions of the 
operations.   

Once the user has provided this information, it is first 
necessary to transform it into a formal representation that 
supports automated analysis.  Given the relationship 
between the system description, strategy and goal defined 
in (1) above we then use abduction to programmatically 
infer the strategies that will achieve a particular goal 
(Figure 4).  Additionally, we can use the properties of the 
goal decomposition approach described previously to 
decompose the system description and strategies as 
follows: 

Base predicates: 
initiates(A,B,T)  event A initiates fluent B for all time > T. 
terminates(A,B,T)  event A terminates fluent B for all time > T. 
happens(A,T)   event A happens at time point T 
holdsAt(B,T)   fluent B holds at time point T.  
    This predicate is useful when defining static 
    rules (e.g. state constraints) 
initiallyTrue(B)  fluent B is initially true. 
initiallyFalse(B)  fluent B is initially false. 
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 (2) -  GX1, GX2, ... , GXN d GX  Goal Decomposition 
   

 (3) -  SDX1, SX1 d GX1  
        SDX2, SX2 d GX2  ... 
        SDXN, SXN d GXN         (from 1) 
 

This shows that if there is some combination of lower 
level goals from which we can infer the original goal, 
then for each of these sub-goals there must be a 
corresponding strategy and system description 
combination which will achieve it.  Therefore, provided 
the goal decomposition is correct, intuitively the 
combination of the lower level system descriptions should 
allow inference of the abstract system description and 
similarly the combination of the lower level strategies 
should allow inference of the abstract strategy. 

As mentioned previously, the other component of the 
refinement process is to refine abstract entities into 
concrete objects/devices in the system.  For example, in 
the system illustrated in Figure 1, there might be an 
abstract entity called “Network” that logically consists of 
the  “Engineering Network”, “Core Network” etc., where 
each of these in turn consist of the routers and servers 
within them.  We propose that a domain hierarchy be 
used to represent the relationships between the various 
abstract entities and the low-level concrete objects [8]. 

Domains provide a means of grouping objects to 
which policies apply and can be used to partition the 
objects in large systems according to geographical 
boundaries, object type, responsibility and authority. 
Membership of a domain is explicit and not defined in 
terms of a predicate on object attributes.  An advantage of 
specifying policy scope in terms of domains is that 
objects can be added and removed from the domains to 
which policies apply without having to change the 
policies.  The formal representation of the domain 
structure is as shown in [3]. 

In order to implement the approach outlined above, it 
is necessary to have a formal representation of the system 

description; and the strategies and goals.   However, for 
the implementation to be usable, it would be ideal to be 
able to model the systems in a high-level notation and 
translate this into Event Calculus for analysis purposes.  
UML would be well suited for this purpose since it is 
widely used and is supported by many commercial tools. 

This rest of this section outlines how UML would 
represent each of the types of information that need to be 
modelled together and describes how they can be 
translated into Event Calculus.  The formal language 
being used is based on that described in [3], where in 
addition to the base predicates and axioms of Event 
Calculus we make use of the function symbols shown in 
Table 1. 

3.1 System Description 
The system description models the objects in the 

system in terms of their behaviour.  The notation used to 
formally model the behaviour of objects is identical to 
that described in [3].  Using this notation, and building on 
the example used previously, it is possible to illustrate the 
use of these rules for modelling system behaviour.  So, let 
us say there is an object of type DiffServRouter in the 
example system.  This type has attributes to hold the IP 
interfaces and actions to configure various parameters of 
the router, which might be represented in UML as a class 
diagram.  The actions for the DiffServRouter type can be 
specified in a UML state chart representation as shown in 
Figure 5. 

It is possible to transform this state chart into the Event 
Calculus notation presented previously where the input 
shown on each transition arrow is the action being 
performed.  For transition between different states, the 
current state values become the PostFalse fluents; any 
actions associated with the transition and next state values 
become the PostTrue fluents; and the current state values 
become the PreConditions.  Self-transitions should not 
specify the current state as PostFalse fluents. So 
following this scheme, the transition labelled (**) in 
Figure 5 would be represented in the Event Calculus as 
follows: 

Table 1: Function symbols. 

Symbol Description 
state(Obj, VO, Value) Represents the value of a variable of an object in the system.  It can be 

used in an initiallyTrue predicate to specify the initial state of the 
system and also as part of rules that define the effect of actions. 

op(Obj, Action(VP)) Used to denote the operations specified in an action event (see below) 
systemEvent(Event) Represents any event that is generated by the system at runtime.  The 

Event argument specified in this term can be any application specific 
predicate or function symbol. 

doAction(ObjSubj, op(ObjTarg, Action(VP))) Represents the event of the action specified in the operation term 
being performed by the subject, ObjSubj, on the target object, 
ObjTarg. 
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Figure 6: UML representation of the 
AND-decomposition of a goal 

 
initiates( 
 doAction(_, op(diffServRouter,  
                         setRateLimit(inRate))), 
 state(diffServRouter,rateLimit, inRate), T)   
 holdsAt(pos(state(diffServRouter,  
                   meterType, Meter)), T). 
 

The above rule also shows how we make use of the 
pos() function as described in Section 2.2.  Note that, 
whilst we have shown the details of the Event Calculus 
representation of the system organisation and behaviour 
models, it is not necessary for the user to directly specify 
anything in the formal notation. Instead they would use 
UML class diagrams, state charts together with a domain 
model chart and the system will generate the Event 
Calculus code required for the refinement procedure.  

3.2 Goals 
A UML profile for modelling goals and goal 

refinement patterns described in the KAOS approach has 
already been developed and is presented in [9].  Figure 6 
shows how an AND-decomposition of a goal would be 
represented in this notation.  The profile defines a number 
of attributes for the <<goal>> stereotype, including one to 
hold the temporal logic representation of the goal.  
However, in order to support the formal analysis required 
for validating the goal refinements, it is still necessary to 
map the temporal logic formalism of KAOS into Event 
Calculus and describe a mechanism for verifying the 
correctness of a goal refinement.   

The goal refinement patterns provided by KAOS make 
use of some of the temporal logic operators described in 
[10]:  

 
X    X holds in the current state 

 X,   X will eventually hold 
 X,  X held at some time in the past 

YW X,  Y holds unless X holds 

 

The Event Calculus representation for each of these 
temporal operators is shown in Figure 7. 

The UML profile in [9] also describes a high-level 
notation for representing these patterns, each of which 
can be mapped into a set of temporal logic formulas.  
These can be used by our system to guide the user in 
defining the sub-goals for a given goal and also to 
validate the correctness of the sub-goals.  For example, 
applying the (P =>  R, R =>  Q) d P =>  Q pattern 
would present the user with a template of the following 
form: 
 
 If P is true then eventually R is true, AND 
 If R is true then eventually Q is true. 
 

It would be up to the user to insert the appropriate 
value for the missing goal, R.  The formal version of the 
goals would then be mapped into Event Calculus and the 
system would assert each of the sub-goals into the overall 
formal specification and attempt to prove the following 
properties of the refinement: 

1. G1, G2, .. Gn d G (entailment): validated by 
trying prove G after asserting all the sub-goals 

2. ∀i: ∧ji Gj S G (minimality): validated by 
checking the entailment property for each subset 
of the sub-goals. 

Figure 5: UML state chart for DiffServRouter type 

 
  X -> ∃T:     holdsAt(X, T) ∧ T=now. 
 
  X -> ∃T,T’:  holdsAt(X, T’) ∧ T=now  ∧  
                  T’>T. 
 
  X -> ∃T,T’:  holdsAt(X, T’) ∧ T=now  ∧  
                  T’<T. 
 
 Y W X -> ∀T:     holdsAt(Y, T)   
                    ¬holdsAt(X, T) 
                    T≤T’<T’’ ∧ T=now. 
 

Figure 7: Event Calculus representation  
of temporal logic operators 
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3. G1, G2, …, Gn S false (consistency): validated 
by making sure that asserting the sub-goals does 
not nullify the entailment properties of any 
existing goal refinements. 

If it is not possible to show the entailment property for 
the goal refinement, this indicates that either there is a 
missing sub-goal or the wrong goal refinement pattern has 
been applied.   

3.3 Strategies 
So far we have discussed the types of information that 

must be specified by the user for the refinement 
procedure to work.  However, strategies do not fall into 
this category since they will be actually be derived by the 
abductive analysis procedure used in the refinement 
approach.  Therefore, it is expected that the formal 
representation of a strategy is actually determined by the 
representation of the system behaviour and goals defined 
above.   

As mentioned previously, a strategy describes the 
mechanism by which the system can achieve a given goal 
and is therefore defined by a set of operations to be 
performed sequentially or in parallel.  Specifically, the 
strategy is defined using a conjunction of 
happens(doAction(...), T) predicates having a 
relationship between the time values that corresponds to 
the order in which the actions should be performed.  For 
example, a strategy that defines Obj1 performs 
Obj2.Action1 and Obj2 perfoms Obj3.Action2 in parallel, 
followed by Obj2 performing Obj3.Action3 would be 
represented in our formalism as: 
 
 happens(doAction(Obj1, op(Obj2, Action1)), T0),  
 happens(doAction(Obj1, op(Obj3, Action2)), T0),  
 happens(doAction(Obj2, op(Obj3, Action3)), T1),  
 T0<T1. 
 

In the interests of usability, it would be better if 
strategies are presented to the user in a high-level form.  
So, given that strategies define a method invocation trace 
for achieving a given goal, we can represent them in 

UML using a message sequence chart.  The UML model 
for the example above is shown in Figure 8. 

A strategy is considered to be abstract if any of the 
actions defined in it is a method defined as part of an 
abstract entity.  High-level, abstract policies can be 
defined using such strategies in the action clause.  If the 
strategy is not abstract, it can be used in a concrete, 
implementable policy. 

4. Policy Refinement: An Example  

In this section we describe how the formal 
representation and approach presented in this paper can 
be used to refine Service Level Agreement policies for 
the example system shown in Figure 1.  Figure 9a shows 
the UML model for the objects in this system, including 
the abstract entities, Network and Router.  The 
behavioural model is as shown in Figure 5.  The high 
level policy we wish to refine is stated as follows: 

On demand the network should provide Gold quality of service to 
web services application traffic on the eCommerce server. 

Obj1 Obj2 Obj3

Action1

Action3

Action2

The goal we are interested in achieving is to provide 
gold QoS for network traffic to a particular application on 
the eCommerce server.  The goal hierarchy for reducing 
this goal is shown in Figure 9b and the temporal logic 
representation for some of these sub-goals is presented 
below (tfc1 denotes the Traffic Class relevant to the 
goal): 

Figure 8: UML sequence chart for a strategy  
 G1  - send(pkt, tfc1) ⇒ qos(pkt,gold). 

 G11 - send(pkt, tfc1) ⇒  
              routed(pkt, R, tfc1). 

 G12 - routed(pkt, R, tfc1) ⇒  
              detected(pkt, R, tfc1). 

 G13 - detected(pkt, R, tfc1) ⇒  
              configured(R, tfc1, gold). 
 
 G14 - configured(R, tfc1, gold) ⇒  
              qos(pkt, gold). 

 G131 - detected(pkt, R, tfc1) ⇒  
              routerParmsKnown(R, gold, parms). 
 
 G132 - routerParmsKnown(R, gold, parms) ⇒  
               parmsSet(R, gold, parms). 
 
 G133 - parmsSet(R, gold, parms) ⇒  
               configured(R, tfc1, gold). 
 

At each level of goal reduction, we use abduction to 
determine the strategy that will achieve the sub-goals.  
The absence of a strategy indicates that there is some 
information missing in the system description at one of 
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the levels of abstraction.  For example, at the top level of 
this example, there is no abducible strategy for the goal 
“G13 - Router Configured for Gold Qos”.  This can be 
addressed by extending the abstract Router object with a 
method configureQoS(gold).  Similarly, the strategy for 
the lower level goal, “G132 - Set the router parameters” 
can be achieved by defining the behaviour of the  
setParms(…) method of the Router object appropriately.  
Once these modifications have been made, the abduction 
process will yield abstract strategies (since the operations 
derived belong to abstract entities) for achieving each of 
the goals.  In order to realise a concrete strategy, it is 
necessary to refine the goals further, into the lowest level 
ones shown in Figure 9b. 

Now, attempting to abduce the lowest level goals 
yields a set of concrete operations that configure the 
DiffServRouter object in the appropriate way: 
 
?- showStrategy([ 
    state(diffServRouter, dscp, Var_DSCP),         
    state(diffServRouter, meter, Var_Meter), .. 
    state(diffServRouter, ofp, Var_OFP]). 
 
 1 - happens(doAction(_, diffServRouter,   
                      setDSCP(Var_DSCP), 0),          
 2 - happens(doAction(_, diffServRouter,   
                      setMeter(Var_Meter), 0),                     
      ... 
 6 - happens(doAction(_, diffServRouter,   
                      setOverflow(Var_OFP), 2).           
 

Having identified the actions required in the lower 
level policy, all that remains is to refine the subject and 

target entities.  In the original high-level policy we can 
identify the target entity as “the network”.  For the policy 
we are refining, we are only concerned with objects that 
are of type DiffServRouter (since this is the only object 
type in the policy’s action clause).  Therefore the refined 
target objects can be determined by traversing the domain 
hierarchy and selecting the objects of type 
DiffServRouter. 

For ease of future specification, we can create a new 
domain DiffServRouters, and assign each of these target 
objects as members.  Given there is no information about 
the subject entity in the top-level policy, it requires the 
user to apply some application specific knowledge to 
identify the correct subject for the low-level policy as 
DiffServConfigMgr.  The event mentioned in the high-
level policy is “on Demand” and given that there is no 
information in the system description about how this 
might be refined; it is up to the user to specify the lower 
level event to be used by the policy as 
adminRequest(Parms).  This yields the final low-level 
policy as: 
 
 oblig /SLA/ConfigGoldQoS { 
   on       adminRequest(Parms); 
   subject  s = /PMA/DiffServeConfigMgr; 
   target   t = /DiffDServRouters/; 
   do       (t.setDSCP(Parms.DSCP) &&  
             t.setMeter(Parms.Meter)) -> 
             ... 
             t.setOverflow(Parms.OFP); 
  } 
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5. Discussion  

The approach described above provides a means of 
determining the strategy for achieving a particular goal, 
and identifying the specific objects in the system that are 
required to execute the strategy.  However, there is no 
mention of how to decide whether a particular strategy 
should be specified as a policy, as opposed to directly 
implementing as system functionality.  Using a policy 
specification differs from a direct implementation in that 
a policy controls the required functionality rather than 
implementing it directly.  Therefore policies provide a 
great deal of flexibility in situations where there a several 
alternative strategies for achieving a goal, and it would be 
useful to dynamically switch between these strategies 
depending on the run-time state of the system.  For 
instance, in the example scenario outlined above, the 
Gold QoS requirement might be met by either configuring 
the DiffServRouters in the manner described, or by 
dropping packets belonging to other applications.  In this 
situation, two alternative low-level policies could be 
defined such that the strategy most appropriate for a given 
situation is used. 

The exact circumstance in which a strategy should be 
encoded as a policy, rather than system functionality, will 
depend on the particular application domain.  So, whilst 
there is no obvious way to automate this decision, we 
propose the following guidelines to determine the 
situations in which a policy-based implementation would 
be appropriate: 

1. If the goal refinement process results in a 
disjunction of sub-goals (i.e. the high-level goal 
can be achieved by one of an OR-decomposed set 
of sub-goals), the strategies derived for each of 
the sub-goals could be encoded as policies. 

2. If the system supports multiple strategies for 
achieving a given goal, each of these strategies 
could be encoded in a separate policy. 

3. If a strategy has parameter values that the user is 
interested in changing at a future point in time, 
implementing such a strategy in a policy will 
provide the necessary flexibility to do this. 

These guidelines should apply to all types of 
application.  Additionally there may be application-
specific guidelines that further guide the user in their 
decision to apply policies. 

The policy refinement process described in this paper 
is built on a systematic, formal approach to refining goals 
thus ensuring that the strategies derived actually meet the 
requirements of the high-level policy.  Also, the 
derivation of these strategies makes use of a description 
of the system, which means the policies derived are 

enforceable by the system.  Using domain hierarchies to 
model the relationships between abstract entities and 
concrete objects, together with type information, allows 
the system to identify the objects that may be required to 
execute the strategies.  These features illustrate how this 
solution satisfies the principal objectives of a policy 
refinement process identified in [1].  Additionally, by 
implementing the process using a formal representation it 
is possible to automate parts of the refinement process. 

Automation of the technique presented here requires a 
tool that allows the user to specify the system behaviour 
and goal information in UML and then translates this 
representation into Event Calculus for analysis.  Also, the 
results of the analysis should be presented in an easy to 
understand form.  To achieve this, we envisage the final 
tool solution will integrate a UML editor, such as 
ArgoUML, with a Prolog system implementing an 
abductive reasoning engine.  For the latter part of the 
solution, we will use the A-System with SICStus Prolog 
[11].  This latter part of the architecture has already been 
used to develop the policy analysis approach presented 
previously [5]. It is expected that this refinement and 
analysis tool will be integrated with a policy management 
system such as the Ponder Toolkit [8].  Development of 
an integrated refinement and analysis toolkit will form the 
core of our future work. 

An important consideration when developing any 
formal technique is to ensure that the implementation is 
decidable and computationally feasible.  In the Prolog 
implementation of the example, we have been able to 
ensure this by limiting ourselves to stratified logic 
programs.  This permits a constrained use of recursion 
and negation while disallowing those combinations that 
lead to undecidable programs [12]. It is anticipated that 
we can remain within the realms of stratified logic 
programs for most applications of our technique.  This 
would be advantageous since there are numerous studies 
that identify stratified logic as a class of first order logic 
that supports logic programs that are decidable [13, 14].  
Moreover, such programs are decidable in polynomial 
time [14, 15].  A more detailed analysis of the 
computational complexity and expressive power of 
stratified logic can be found in [14]. 

One limitation of the work presented is that it does not 
provide a means of deriving the parameter values required 
by the operations to achieve a particular goal.  Such a 
capability would be particularly useful when refining 
network management policies, where for example there 
might be a requirement that the network configure itself 
to provide optimal bandwidth utilisation by calculating 
the appropriate values for parameters like the input rate of 
the DiffServ meters.  As part of our ongoing research, we 
plan to investigate the possibility of integrating constraint 
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logic programming techniques to provide such 
capabilities.  Another limitation is that at present we treat 
all the goals together, only accounting for whether their 
decomposition is based on the AND/OR connective.  
However, there may be situations where it is necessary to 
account for an explicit temporal ordering of the goals 
when performing refinement.  Whilst this may be easily 
handled by making use of the time information provided 
by the Event Calculus representation, the implications 
must be fully considered and this requires further 
investigation.   

6. Related Work  

Work by Kelly [17], introduces the idea of annotating 
a goal refinement hierarchy with strategies for 
representing safety cases.  However, in the context of 
safety case representation the strategies document the 
justification for the lower-level goals achieving the high-
level goal.  In contrast, the goal refinement approach used 
in this paper uses logical proofs to justify the validity of 
the goal decomposition and strategies are used to 
represent the mechanism by which the system can achieve 
a given goal.  Therefore strategies provide the 
relationship between the system architecture and the 
goals. 

In the wider software engineering context, there is a 
body of work on the synthesis of reactive systems [18], 
which aims to derive the system behaviour description 
based on temporal formulae that describe the output of 
the system.  This is quite different from the approach 
presented in this paper, since our objective is to simply 
identify the sequences of actions, from the given system 
description, that will achieve a particular goal. 

There are few examples of practical approaches for 
policy refinement.  One such example is described in 
work done at Hewlett-Packard Laboratories, which 
outlines a policy-authoring environment that provides a 
policy wizard tool, called POWER, for refining policies 
[19].  Here, a domain expert first develops a set of policy 
templates, expressed as Prolog programs, and the policy 
authoring tools have an integrated inference engine that 
interprets these programs to guide the user through the 
refinement process.  A major limitation of this approach 
is the absence of any analysis capabilities to evaluate the 
consistency of the refined policies.  Also, the POWER 
approach depends on the domain expert having a detailed 
understanding of the entire system to develop a usable 
policy template.  The refinement approach outlined in this 
paper avoids these problems by not only incorporating a 
complete analysis technique but also supporting abductive 
reasoning for deriving the action sequences required to 
achieve a goal. 

7. Conclusions 

In this paper we have presented an approach to policy 
refinement that allows the inference of the low-level 
actions that satisfy a high-level goal by making use of 
existing techniques in goal-based requirements 
elaboration and the Event Calculus.  We have ensured the 
usability of the approach by showing how the user can 
specify the system using UML and how this specification 
can be translated into the formal representation for 
analysis.  We have shown how the approach provides 
automation support for the refinement process when 
given a specification of the system behaviour and the 
goals to be satisfied.  In order to relate the system 
behaviour specification with the goals, we introduce the 
concept of strategies and show how these can be used in 
the specification of policies.  

 There is ongoing work to investigate how the 
presented formalism can be extended to support the 
identification of the events and constraints to be included 
in the low-level policies.  However, the immediate focus 
of our future work is to develop adequate tool support 
that uses the technique described here together with the 
analysis approach presented previously [3] to provide a 
comprehensive environment for policy specification.  
Additionally we will be investigating the use of the 
technique described here for refining and analysing traffic 
management policies for network QoS management.  The 
areas of further investigation identified in the discussion 
will also be addressed as part of this work. 
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