
A Framework for Organisational Control Principles

Andreas Schaad
University of York

Department of Computer Science
Y010 5DD, York
United Kingdom

Email: andreas.schaad@cs.york.ac.uk

Jonathan D. Moffett
University of York

Department of Computer Science
Y010 5DD, York
United Kingdom

Email: jonathan.moffett@cs.york.ac.uk

Abstract

Organisational control principles, such as those
expressed in the separation of duties, supervision, review
and delegation, support the main business goals and
activities of an organisation. Some of these principles
have previously been described and analysed within the
context of role- and policy-based distributed systems, but
little has been done with respect to the more general
context they are placed in and the analysis of
relationships between them.

This paper presents a framework in which
organisational control principles can be formally
expressed and analysed using the Alloy specification
language and its constraint analysis tools.

1 Introduction

Recently a new interest in topics such as delegation and
revocation of roles and policies, separation of duties and
supervision and review could be observed within the
context of role- and policy-based distributed systems
management [1], [2]. We believe that these concepts can
be viewed as belonging to a more general set of
organisational controls, showing certain characteristics
and dependencies when analysed on their own and in
combination.

This paper presents our current approach, intermediate
results and lessons learnt in the definition of a framework
suitable to express and analyse a set of selected control
principles. In line with the framework it focuses on two
main aspects: A review and discussion of organisational
control principles, their origin, and relationships; and a
formal object model to express static constraints and
define dynamic, state-changing operations over sequences
of states. Technically, this model is supported by using the
Alloy specification language and its analysis facilities [3].

The rest of this paper begins with a definition and
discussion of organisational control and control principles
(Section 2), followed by an outline of the conceptual
model underling the framework (Section 2.1). In

combination with a modular specification architecture
(Section 2.2), this model is suitable to express and analyse
a set of control principles. Before doing so, the most
fundamental parts of the Alloy language are introduced
(Section 2.3), together with an explanation of how to
model object behaviour over sequences of states and
maintain a history of state changing operations. Some
selected separation controls are then specified (Section
3.1), followed by the definition of delegation and
revocation controls for authorisation and obligation
policies (Section 3.2). The delegation of obligations will
reveal the necessity for review controls (Section 3.3.),
which are part of more general supervision controls
(Section 3.4). The paper finishes with an informal
discussion of some results obtained through the dynamic
analysis of composed control principles (Section 4).

2 A Control Principle Framework

One way of viewing organisations and the context of
this work is the formal organisation, defined by an
explicit structure linking positions, roles and principals as
well as specific relationships, rules and regulations
constraining the behaviour of these entities. This view
does not, however, imply that this structure is static. It
continuously evolves in order to satisfy its goals and this
re-organising process is what results in an organisation.

In [4] the major dimensions of organisational structure
are described. From these, four key aspects of an
organisation can be derived:

• Division of work by grouping together sections,
departments, divisions and larger units.

• Definition of roles and positions through allocation of
individual tasks and responsibilities, job specialisation
and job definition;.

• Formal relationships between organisational entities,
levels of authority and spans of control.

• Mechanisms for the delegation of authority and
procedures for monitoring and evaluating the use of
discretion.

Principal

Object

Position

Role

AuthorisationObligation

Policy
Object

Review

Evidence

Action

specifies

exclusive

creates

Review
Action

reviewed_by

defines

role_hierarchy

has_member

supervises

Group

member_of

subject /
target has_active

Figure 1: Conceptual Control Principle Model

It is a commonly accepted view to see organisations as
goal attainment systems. Top-level goals are refined into a
set of business activities. Organisations try to achieve
control over these business activities. Control is the means
by which activities and resources are coordinated and
directed towards the achievement of the goals they have
been derived from. This implies a degree of monitoring
and feedback, achieved by implementing a system of
internal control [5]. Such a system usually follows a
control loop of assessing systems and procedures;
establishing the appropriate controls; evaluating outputs;
and adjusting the controls if necessary. Implementations
of control systems will look different from one
organisation to another, but there are some underlying
control principles that are common to many organisations.

Control principles are general constraints placed upon
an organisation and its systems. They are derived from the
organisation’s top-level goals and are refined together
with these goals through the organisational hierarchy.
While such principles have been identified long before the
integration of computer systems into organisations [6],
some of these have received renewed attention within the
context of role- and policy-based distributed systems
management. These are the principles of:

• Separation of Duties
• Review and Supervision
• Delegation and Revocation

2.1 Underlying conceptual model

It is evident that the conceptual model presented in the
following re-uses concepts established by existing role-
and policy-based distributed systems management models,
more specifically [1] and [2]. In fact, it would be worrying
if this were not the case and our model is intended to
generalise these with respect to the representation of
controls. The structure of the model for control principles
that we use as the basis for our specification and later
analysis is displayed in figure 1. Grey, dotted lines
indicate object extension ("is-a") as supported by the
Alloy language, black solid lines declare the relations
between the objects. This representation gives only a first
overview of the most basic elements and relationships and
must not be mistaken for the entire model. Nevertheless,
this graphical approach provides a better means of
communicating parts of the conceptual model than pure
text and maps uniquely to the textual Alloy specification.

Objects can be members of groups. A group is itself an
object and thus may also be a member of some other
group. A principal is an object representing a human user
or automated component in the system. A policy object is
an abstraction determining the behaviour of principals in a
system and can be either an authorisation or obligation.
Policy objects have subjects and targets. While any
meaningful object may serve as a target, only roles and
principals are valid subjects. For example, an

authorisation may have a role and/or a principal as its
subject. In other words, a principal may hold a policy
object directly or through a role he is a member of. The
reasons for this abstraction are implementation specific.

Policy objects define a set of actions. In the case of
obligations these are the actions that have to be performed
and in case of authorisations the allowed actions.
Execution of an action may create evidence which is
specified in an obligation such that it can be investigated
whether the obligation was satisfactorily met. A review
obligation (see section 3.3) is a specific kind of
obligation, which has another obligation as its target. A
review results from the prior delegation of this target
obligation. Review actions are a specific kind of action,
which review the evidence generated by the target
obligation in order to assess whether it has been
successfully discharged.

Roles are a structuring mechanism to relate principals
and policy objects. Two role specific relations allow the
formation role hierarchies and the definition of mutually
exclusive roles. A position is a specific kind of a role with
some associated, context-dependent, attributes. Positions
can form supervision hierarchies over the supervises
relation. Role activation is modelled through a simple
activation relation between a principal and a role.

2.2 A specification architecture

The concept of modules in Alloy allows for the separation
of the specification into separate, partially dependent
packages (Figure 2).

Cardinality
Controls

Separation
Controls

Administrative
Behaviour

Delegation
Controls

User
Behaviour

Static
Analysis

Dynamic
Analysis

Control
Principle
Structure

State
Machine

Figure 2: Specification architecture

Each package may contain a set of Alloy signatures, facts
and functions. The arrows indicate a dependency
relationship between the packages, e.g. the user behaviour
package requires the structure package. The purpose of
each package can be summarised as follows: The control
principle structure package contains the basic objects and
relations as described in the previous section. Cardinality
constraints such as on the span of control and role

activation are part of the respective package. Static and
dynamic separation controls such as separation of duties
are defined in the separation controls package. Delegation
and revocation controls as well as review mechanisms are
also defined in a separate package. We further distinguish
between user behaviour (e.g. accessing an object) and
administrative behaviour (e.g. role hierarchy
manipulations). The static analysis package defines a set
of assertions about a state while the dynamic analysis
package does the same but for sequences of states. The
state machine package specifies a mechanism for defining
such sequences.

2.3 The Alloy specification language

Alloy is a lightweight first-order logic modelling
language. For a full introduction to the language, refer to
[3]. It supports a structured specification, which may
consist of the following main components:

• Signatures - A signature represents a basic type and
signature extension is a powerful feature to support
hierarchical specification.

• Fields - A field relates basic types and is defined
within the signature.

• Facts - Facts are explicit constraints on the model.
• Functions – Functions can be used to relate system

states, define specific constraints or return values.
• Assertions - Assertions are statements that are

supposed to be true. Counterexamples are generated
by the analysis tool if an assertion does not hold.

Alloy is supported by a tool for fully automated
syntactic and semantic analysis that uses standard
satisfiability (SAT) solving algorithms. It has been this
tool support which motivated our use of this particular
language instead of other specification languages such as
Z or the Object Constraint Language OCL. We believe
that obtaining immediate feedback from the tool is helpful
to catch conceptual and syntactical errors; resolve
ambiguities; and generally assist in an explorative
approach to model organisational controls. However, we
also found that it is very tempting to use Alloy and its tool
like a procedural programming language. Yet, this will
inevitably lead away from the actual problem, trying to
cover all the (often not context-relevant) cases exposed
through the declarative behaviour of the language. This
‘overspecification’ may in turn reduce the performance of
the analysis tool significantly.

Basic syntax and semantics

In Alloy, every expression denotes a relation.
Relations can be of any arity. Sets of atoms are

represented by unary relations and scalars by singleton
unary relations. Some of the available standard operators
are the union + and intersection &. Depending on the type
and arity of the given arguments, the operators will yield a
(singleton) unary relation, binary or n-ary relation. The
operators for comparing relations are = for equality and
in for membership. Some available logical operators are
negation !; conjunction &&; disjunction ||; and
implication =>. Two of the available quantifiers are the
universal quantifier all and the existential quantifier
some. One of Alloy’s strengths is its treatment and ease of
navigation over complex relations. The available
relational operators are the dot . for joining two relations;
the product of two relations ->; the transpose of two
relations ~; and the transitive ^ and reflexive transitive *
closure operators.

In Alloy, two relations can be joined if the last atom of
the first relation matches the first atom of the second
relation. The resulting relation consists of the atoms of the
first and second relation, leaving the matching atom out.
When two relations a and b are joined in a.b, the
resulting relation is obtained by taking every combination
of a relation in a and relation in b and including their join.
The product of two relations a and b is a->b and yields
every combination of instances of a relation from a with
the instances of a relation from b and concatenating them
without dropping the intermediate atom. The treatment of
scalars as singleton unary relations allows for the
'navigation' over fields of atoms. Given a scalar a, the
expression a.b.c denotes the relation obtained by
traversing from a over b to c.

If there are two basic types Principal and Role
related through the relation has_member, then for a
single role r the expression r.has_member would yield
the relevant principals, while for a principal p the set of
occupied roles can be obtained through the transpose
p.~has_member. A policy object may be assigned to
roles through the subject relation, and so the policy
objects a principal holds through his roles can be obtained
through the expression p.~has_member.~subject.

So, parts of the conceptual model (figure 1) can be
represented in the form of the following signatures:

disj sig Object{}

disj sig Principal extends Object{
has_active: set Role}

disj sig Role extends Object{
has_member: set Principal,
role_hierarchy: set Role,
exclusive: set Role}

...

It can be seen how signatures are extended (extends)
from the general object signature, a viewpoint similar to

the object model of [2]. The disj keyword ensures that
there are no overlaps between atoms. Fields such as
has_member: set Principal describe relations
between the relative signature (Role) and other signatures
(Principal) with the keyword set indicating that
several principals may be a member of a role.

This basic model can now be compiled and an initial
analysis would reveal several problems that could occur,
such as cycles in the role hierarchy. Such unintended
properties need to be constrained by specifying invariants
in the form of Alloy facts. Here, a role r must not be in
the set of roles obtained by traversing downwards the role
hierarchy.

fact {all r: Role| r !in r.^role_hierarchy}

Having specified the necessary signatures and facts, the
next step is to define a set of functions to analyse the
behaviour of objects. Such a function could be the
assignment of a principal to a role, where s stands for the
initial and s’ for the after state.

fun prin_role_assign (disj s,s’ : State,
prin : Principal, r : Role) {...}

However, Alloy does not provide a built-in notion of
state. Instead, it allows the specification of states in the
form of signatures, a technique called objectification of
state [3].

Enabling dynamic analysis

Time is modelled as a sequence of states in the
signature State_Sequence (1.). Such a sequence is
defined by a first and a last state (2.), ordered
through the relation next (3.). The !->! part of the
relation says that this is a one to one relation, making the
sequence a total order. Two explicit constraints are
specified as part of the State_Sequence signature.
Within a sequence, all states must be reachable from the
first state (6.). Secondly, all states apart from the last (7.)
must be related via one or more operations such as adding
or removing a principal from a role (8.-12.).

1. sig State_Sequence {
2. disj first, last : State,
3. next: (State-last) !->! (State-first)
4. }
5. {
6. all s : State | s in first.*next
7. all states : State - last |
8. some s=states | some s'=states.next |
9. (some prin:Principal | some r:Role|
10. prin_role_assign (s, s', prin, r) ||
11. prin_role_remove (s, s', prin, r)
12.)
13. }

Using the constraint analyser, we can obtain a possible
model of the specification where Principal_2 and
Role_0 are not related in the initial state State_0 but
after the execution of the assignment operation in state
State_1. Figure 3 is composed of parts of the analyser’s
output to reflect the state changes.

Figure 3: Assigning principals and roles

In order for each state to maintain information about
its objects and their relations separately, the specification
needs to be changed. For example, the Role signature
with the has_member relation

disj sig Role extends Object{
has_member: set Principal,
...}

has to be redefined in terms of a state signature

sig State {
s_has_member: Role -> Principal,
...}

such that the previous binary relation is now part of a
new ternary relation State->Role->Principal, thus
allowing to maintain information about any changes
between states.

Maintaining a history

One additionally required property for the later
specification of control principles is that of a history
mechanism to record activities such as that of a principal
accessing an object or delegating policy objects or roles.
So for a possible function

fun access (disj s: State, r: Role,
prin: Principal, obj: Object) {…}

which specifies object access of a principal using some
role, the relation

access_hist: Object->Principal->Role

shows how the access of a principal using a role and its
associated policies on an object is recorded. There are

several solutions of how to maintain a history. In this
context history is maintained by using a History
signature:

sig History{
access_hist: Object->Principal->Role
delegate_hist: Principal->Principal->Role}

This information is integrated into the state signature
such that a state now has a reference to at most one
specific history instance showing what happened for that
specific state.

sig State{
...
s_history: option History
...}

It is required that any two states maintain a distinct
history in terms of the actual object. Otherwise, it might
happen that if the same operation is performed twice, the
involved states refer to the same object, leading to a loss
of information. This, however, does not forbid two history
objects to maintain the same history. The history
mechanism avoids redundant information as, for example,
a history in form of a log with all accesses so far for a
state, would hold. This also allows the observation of
what caused a state transition. Since states are part of an
ordered sequence of states, any information can be
gathered by traversing that sequence from the first to the
current state.

3 Specifying Control Principles

Our discussion of control principles is based upon the
distinction between authorisation and obligation polices,
introduced in section 2.1.

3.1 Expressing separation controls

The separation of duties is probably the best
understood control principle at present, as shown by the
variety of existing work specifically in the areas of role-
based access control and distributed systems management
[7], [8], [9], yet no work seems to address the separation
of duties within the context of other control principles. In
its most general definition, the separation of duties can be
best described as a means of preventing (in)advertent
error and fraud through the general or context-dependent
limitation of a principal’s authority.

The discussion on separation of duties gained impetus
with the advent of role-based systems. However, in most
cases the term seems to be limited to authorisations,
specifically because role-based standards such as
RBAC96 do not define duty or responsibility but only

authority in terms of assigned permissions [1]. Strictly
speaking, none of the existing work on this principle
addresses the separation of duties, but the separation of
authority, and lacks a concept for expressing duty or
responsibility. Even frameworks distinguishing between
obligations and authorisations [2] actually only discuss
how to separate authority and neglect the concept of
obligation when demonstrating how to enforce separation
of duties.

In contrast, the model presented here provides the
notion of separation of both authorisations and
obligations. In the following the implementation of some
selected separation controls is outlined.

Simple static and dynamic separation controls

The static and dynamic separation of duties are
enforced using the notion of exclusive roles [7]. To
preserve simple static separation no pair of exclusive roles
may be assigned to a common principal. In this case, the
function takes a state, two disjoint roles and a role graph
as its input. If the two roles are in the graph’s conflict set
then the intersection (&) of the sets of principals assigned
to the roles must be empty (no) in that state.

fun ssod (s:State,r1,r2:Role,rg:RoleGraph){
r1->r2 in rg.conflict =>
no ((r1.(s.s_has_member) &

(r1.(s.s_has_member))}

In a similar manner, a simple dynamic separation is
defined, allowing for the assignment of exclusive roles to
a common principal but preventing the simultaneous
activation through the has_active relation.

fun dsod (s:State,r1,r2:Role,rg:RoleGraph){
r1->r2 in rg.conflict =>
no ((s.s_has_active).r1 &

(s.s_has_active).r2)}

A simple form of analysis is to assert that if a state
preserves static separation of authority it also preserves
dynamic separation as no counterexample is generated [7].

assert ssod_implies_dsod {all s:State |
all r1,r2:Role|

fun ssod(s,r1,r2,rg)=>fun dsod(s,r1,r2,rg)}

Object–based separation controls

Object-based separation means that if a principal is in
possession of any two conflicting roles then he must not
access the same object in both of them. This can be
expressed in the obj_sod constraint where the function

fun hist_set () : set State.s_history {
result = {...}}

returns the history over all states so that using the relevant
field (here access_hist) the needed information is
retrieved.

fun obj_sod() {all s:State|
all prin:Principal|
all disj r1,r2: Role|
all o: Object |
all rg: RoleGraph|

(r1->r2) in rg.conflict &&
(o->prin->r1) in hist_set().access_hist =>
(o->prin->r2) !in hist_set().access_hist
}

Further separation controls

In a similar manner, we have specified further controls
such as operational or history-based separation in the
context of this framework. Additionally, we have
demonstrated how to model the degree of shared
authorisations as suggested in [7]. It is worth noticing that
all separation controls have been specified as Alloy
functions instead of universal facts. This allows for their
composition, e.g. static separation with partially shared
authorisations, and later assertion of this composition.

3.2 Delegation and revocation

The delegation and subsequent revocation as a
mechanism to decentralise has been addressed in a
multitude of work at varying levels of granularity and
differing contexts, e.g. [10], [11], [12].

However, it often seems to be the case that the
mechanism as such is not really understood in terms of its
organisational intent and so the distinction between
administrative and user-based delegation activities as
perceived in, for example [13], [14], [15], may seem
artificial. After all, the administrator is also a user of some
system. Therefore, if delegation were looked at from a
technical perspective, i.e. some sort of object or variable
assignment, then this distinction would be clearly
obsolete. However, it is their intent that is distinct. The
administrator delegates because he follows a set of
procedures. The 'business user' delegates because he has
some sort of business goal he wants to accomplish. In fact,
an administrator is a user and his business is to administer.
Another difference is that an administrator does not
usually hold the object to be delegated but only has some
administrative authority over it, while in the case of a
user-based delegation the object must be held by the
delegating principal.

Additionally, the organisational motivation behind
delegation activities must be considered. The various
activities that are performed within an organisation can be
categorised according to their degree of similarity,
regularity and repeatability. So the higher this degree the

more can these activities be regulated. In this case,
subjects are released from making decisions on their own
and merely execute what is defined in organisational
policies. The lower this degree, the more a principal has to
make individual decisions that can not be regulated by
policies. In this case delegation is a necessary means to
cover situations for which there is no defined procedure.
If delegation activities occur frequently or principals
delegate some object indefinitely, then this indicates that
the current organisational structure and procedures do not
reflect the goals and tasks of the principal. The initially
temporary delegation must now become part of the regular
administrative activities shaping the formal organisational
structure. Therefore, it can be argued that on the one hand
delegation is a key mechanism for achieving structure,
while on the other hand it is constrained by structure.

The following sections will discuss how some basic
delegation properties can be expressed in Alloy, focusing
on the difference between delegating authorisation and
obligation policy objects.

Basic delegation properties

What would be the properties of a basic delegation
function in this context? The most general definition is
that before the delegation the delegating principal is in
some way related to the object to be delegated, while after
the delegation the receiving principal is related to the
object. This can be expressed as follows in terms of Alloy,
where the function assigned_policy() returns true if a
policy object is assigned either directly or over a role to a
principal in some state.

fun delegate (s,s’:State| p1,p2:Principal|
pol:PolicyObject) {

assigned_policy (s, pol, p1) &&
assigned_policy (s’,pol, p2)}

Analysing the behaviour of this function it can be
observed that with respect to the delegating principal, the
object may or may not remain related to him, while the
receiving principal might have been related to the object
before the delegation. These observations are relevant to
the distinction between authorisation and obligation policy
objects. In the case of delegating authorisations, the
delegated object may or may not remain related to the
delegating principal. For example, if a principal needs
additional help with a task due to his limited resources
(such as time), he may transfer the needed authority to
some other principal to assist him, at the same time
retaining his authority. In the case of delegating an
obligation, the delegating principal must not continue to
hold the obligation, as it must always be clear who exactly
holds an obligation at a given moment. Instead, a new
obligation called a “Review” must be introduced to hold

him to account for his delegation (Section 3.3). An
extended delegation operation needs to cater for the
delegation of authorisations and obligations in the manner
described above, but there is no space to discuss this any
further in this context. See [16] for a detailed discussion.

Basic revocation properties

Revocation properties such as propagation, dominance
and resilience are discussed in [12]. The history of
delegation activities that is preserved in our framework
allows for the revocation of policy objects to follow these
properties. Space does not permit a more detailed
discussion and the following sections will focus on the
more novel idea of review policies for delegated
obligations.

3.3 Expressing review controls

It is necessary to hold to account persons who delegate
obligations, because if not, obligations might be delegated
without any assurance that they will be discharged. The
activity of review describes a post-hoc control that aims at
controlling delegated obligations.

In order for principals to be able to give an account of
the obligation that they have delegated, they must review
the evidence generated by the discharge of the obligation.
This is done by creating a review policy corresponding to
the delegated obligation and its evidence. This review is
the result of specifically delegating an obligation and is a
specific type of obligation itself (Figure 1). In order to be
reviewed, an obligation must have evidence associated
with it, in the form of a set of application dependent
criteria that must be met, e.g. some log file that is to be
produced. The actions defined for an obligation must
correspond to this evidence, in order that it can be
produced after discharging an obligation. The review
policy created for a delegated obligation then defines
review actions by which the generated evidence is
reviewed. A consequence of our approach is that
obligations can not be delegated without the prior
definition of the evidence of their discharge. A necessary
precondition we have to enforce is that the relation
reviewed_by: Evidence -> Review_Action has
been instantiated. The appropriate value of Evidence for
a Review_Action is application dependent.

A model of a chain of delegated obligations can be
seen in figure 4. This has been created through an Alloy
specification following the proposed framework. Here
PolicyObject_0 is the obligation that has initially been
subject to delegation, as a result of which the review
PolicyObject_1 was created. This has then been
delegated as well, as it can be seen in the created review
PolicyObject_2.

Figure 4: Delegated Obligation Chain

3.4 Expressing supervision controls

Delegation is one main means of achieving
organisational structure. Two types of delegation have
been identified in this context: delegation as an
administrative mechanism to permanently create structure;
and delegation as a temporary user-based mechanism to
cope with situations not covered by the present structure
and procedures. The latter has been outlined in the
previous section. This section focuses on the former by
discussing the more general supervision obligation of a
principal.

Supervision is the general review obligation of a
principal in a position to ensure that his subordinates carry
out their assigned obligations. Accordingly, a supervision
is defined as a binary supervises relationship between
two positions. This supervises relationship, at its
simplest, carries with it a set of obligations on the
supervisor: To review all the obligations held by the
subordinate.

The concept of evidence allows us to treat the
obligations of a supervisor in the same manner as other
review obligations. If the subordinate provides the
evidence specified in his obligations, the supervisor can
review it in order to generate the evidence that he in turn

discharged his supervision obligation. This evidence
might in turn be reviewed by his next superior etc., up the
supervision management chain.

The inevitable question of the end of such a
supervision chain is dependent on the context and
structure of the organisation, but it is clear that there must
always be an entity (e.g. Board of Directors) that need not
generate evidence for any further review.

4 Analysing Control Principles

This section sketches an approach to control principle
analysis with a focus on the types of analysis and the
relationships between control principles. Technically, this
was supported by using the state sequence approach (see
section 2.3). So, after defining an initial and final state as
well as possible state changing operations, the constraint
analyser could be instructed to look for possible models
within these given constraints.

The two types of control principle analysis that can be
performed in this framework are:

• Control Principle Analysis
• Transition Analysis

Control principle analysis is the analysis of single or
composed controls. Transition Analysis refers to the
analysis of the behaviour of a system over sequences of
states with respect to some defined properties and
constraints. This is in line with the package structure
discussed in section 2.2.

It has already been outlined how composed separation
controls can be analysed (Section 3.1), and the following
two sections will outline some more examples of static
and dynamic composition.

4.1 Static analysis of composed controls

There is a strong correlation between separation and
delegation controls. This can be best summarised by
separation controls requiring or inhibiting delegation.

For example, a dual control might require that a
principal must not perform an obligation on his own.
Instead it must be either cross-checked or parts of it be
separately performed by some other principal. In order to
fulfil this obligation, the principal might have to delegate
one of his roles or its assigned policies to this other
principal to satisfy the dual control.

Another example is the case of a principal intending to
delegate a role or some of its policies. This might violate
the separation controls with respect to the receiving
principal, e.g. if the object to be delegated is a role
declared as exclusive to some role already held by the
recipient.

4.2 Dynamic analysis of composed controls

There is also an example of delegation activities
undermining separation controls that was discovered
through Alloy’s output. This considers the object-based
separation of duty. Object-based separation says that a
principal must not access the same object through two
exclusive roles. The way this control had been initially
specified by us allowed for the following sequence.

Two exclusive roles r1, r2 are available to a principal
p1 in the initial state S1. Consider the state sequence:

S1: access(obj, p1, r1)
S2: delegate(r1, p1, p2)
S3: access(obj, p1, r2)
S4: revoke(r1, p1, p2)

The following can be informally observed. The
principal p1 accesses the object obj through his role r1.
In the next state S2, principal p1 delegates his role r1

to principal p2. It is assumed that such a delegation leads
to the temporary loss of that role. In the following state
S3, p1 accesses the same object through his remaining
role r2, an action that might not have been intended. This
is because in state S3 the only role p1 holds is r2.

Depending on how the history of delegation actions is
evaluated within the separation property, he will be
granted access to the object and can revoke his delegated
role in S4, effectively having accessed the object obj
through both exclusive roles. Only through careful
specification of the separation control and evaluation of
the history of delegation activities for a subject can such
scenarios be avoided.

4.3 Avoidance versus detection

It is a valid argument to claim that the violations and
conflicts that were described in the previous section can
be avoided by simple precedence rules, e.g. static
separation must always be maintained. This is of course
true, but the consequence of this may be that the
organisation’s business is obstructed by excessive control.

The alternative approach, which we advocate as a
general approach, is setting static organisational controls
at a level that may allow violations, and supplementing
them with dynamic controls and post hoc reviews to
maintain the required degree of control in the
organisation.

5 Summary and Conclusion

This paper has presented a framework for the
definition and analysis of organisational control principles
using the Alloy specification language and its supporting
tools. The underlying conceptual model integrates
concepts of existing role- and policy-based distributed
system management models using an object extension
approach. The key aspects and novelties include:

• A discussion of the origins of control principles in the
area of organisation theory, justifying and validating
the components of this framework.

• A demonstration of the suitability of the Alloy
language for specification and analysis of control
principles.

• A specification architecture supporting static and
dynamic analysis.

• A notion of relating roles with obligation and
authorisation policy objects.

• A discussion on the basic principles and organisational
motivations underlying the general delegation of
system objects.

• An approach to delegating obligations and
introduction of the concepts of evidence, review and
supervision to control such delegation activities.

• The possibility to analyse controls on their own and in
combination. This led to the discovery of previously
unknown relationships, specifically between separation
and delegation controls.

This may now be used to model and analyse aspects of
real world organisations and we are currently investigating
how a credit application process may be partially
represented in our framework. Ideally, a workflow model
would complement this. Other future work includes the
further investigation of review and supervision controls.
In particular it needs to be assessed what the effects of the
actual discharge of a delegated obligation on the
participants in the delegated obligation chain are.

It must be clear that any model can only abstract some
of the complex characteristics of organisations and must
leave many other questions unanswered. We nevertheless
believe that this framework is a first step into integrating
existing and new organisational control principles,
providing security practitioners and researchers alike with
a fresh perspective on security and control in
organisations.

References

1. Sandhu, R., et al., Role-based access control models.
IEEE Computer, 1996. 29(2): p. 38-47.

2. Damianou, N., et al. The Ponder Policy Specification
Language. in Policies for Distributed Systems and
Networks. 2001. Bristol: Springer Lecture Notes in
Computer Science.

3. Jackson, D. A Micromodularity Mechanism. in 8th
Joint Software Engineering Conference. 2001.
Vienna, Austria.

4. Merton, R., "Bureacratic structure and personality",
in Reader in Bureaucracy, R. Merton, et al., Editors.
1952, Free Press: New York. p. 361-71.

5. Moeller, R., Changing definitions of Internal Control
and Information Systems Integrity, in Integrity and
Internal Control in Information Systems. 1997,
Chapman & Hall. p. 255-272.

6. Urwick, L., Notes on the Theory of Organization.
1952: American Management Association.

7. Kuhn, R. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. in Proceedings of the second ACM
workshop on Role-based access control. 1997.

8. Simon, R. and M. Zurko. Separation of Duty in Role-
Based Environments. in Computer Security
Foundations Workshop X. 1997. Rockport,
Massachusetts.

9. Gligor, V., S. Gavrila, and D. Ferraiolo. On the
Formal Definition of Separation-of-Duty Policies
and their Composition. in IEEE Symposium on
Security and Privacy. 1998. Oakland, CA.

10. Harrison, M., W. Ruzzo, and J. Ullman, Protection in
Operating Systems. Communications of the ACM,
1976. 19(8): p. 461-471.

11. Sloman, M. and J. Moffett, eds. Delegation of
Authority. Integrated Network Management II, ed. I.
Krishnan, Zimmer, W. 1991. 595-606.

12. Hagstrom, A., et al. Revocations - A Categorization.
in Computer Security Foundations Workshop. 2001:
IEEE Press.

13. Zhang, L., G. Ahn, and C. B. A Rule-based
Framework for Role-Based Delegation. in ACM
SACMAT. 2001. Chantilly, VA, USA.

14. Sandhu, R., V. Bhamidipati, and Q. Munawer, The
ARBAC97 model for role-based administration of
roles. ACM Transactions. Inf. Syst. Security, 1999.
2(1): p. 105 - 135.

15. Barka, E. and R. Sandhu. Framework for Role-Based
Delegation Models. in Annual Computer Security
Applications Conference. 2000. New Orleans.

16. Schaad, A. and J. Moffett. Delegation of Obligations.
in 3rd International Workshop on Policies for
Distributed Systems and Networks (POLICY 2002).
2002. Monterey, CA.

Acknowledgements

The UK Engineering and Physical Sciences Research
Council has provided funding for Andreas Schaad under
EPSRC Scholarship number 99311141.

