
274 information privacy

Just as there are lies, damn lies, and
statistics, there are, on a computer,
productive work, a security
overhead, and integrity checking.
Database integrity checking is
distinguished by its enormous cost in
machine time, and by the paradox
that it is only useful when it fails.

The dictionary definition of
integrity - 'unimpaired or
uncorrupted state; original perfect
condition; soundness' - although it
was coined long before the advent of
data processing, provides a
remarkably accurate description of
its technical use in computing. In
passing, it is very interesting how
words such as 'corruption' and
'integrity', which fall naturally from
the tongues of Puritan moralists,
should also be the common currency
of computer programmers in the 20th
Century. The 17th Century Puritan's
striving after moral perfection is
quite accurately parallelled by our
20th Century striving after technical
perfection, with the consequence of a
single lapse being perdition in either
case; 'fault-tolerance' in either
religious beliefs or computer systems
is subsequently developed because of
the impossibility of reaching
perfection.

Integrity in computer files is most
easily described by a list of
requirements, lapse from any one of
which will cause integrity to be lost.
The data must be readable by the
hardware, it must conform to the
format defined for the software-
access method being used, and it
must be reasonable in the field values
presented to the application program.
It can, however, retain its integrity
while falling short of perfection in
one important point; it may not be
correct. If a human being has input to
a computer system data that is
entirely reasonable but happens to be
incorrect, then it would not be useful
to suggest that the computer system
lacks integrity; it may be
inadequately specified, if the error
should have been detected, but, in
terms of the specification to which it
was written, it has retained its
integrity.

A further point arises from this
last one; ultimately, a computer
system's integrity is defined in terms
of the input it will accept from, and

the output it will return to, human
users. However, a prerequisite of that
integrity is that the data on backing
store shall retain its uncorrupted
state, and the integrity discussed in
this article is concerned with the data
held on backing store by the
computer system.

To understand why it is required,
and how to do it at minimum cost, it
is first necessary to understand the
problem of database integrity. As a
previous article in this column c,
discussed ('Providing backup' Vol I
No4 (March 1979), one of the
consequences of the move from
serially based batch systems to
random-access-based real-time
systems has been that automatic
integrity checking is no longer
provided. The serial update, in which
yesterday's output file is today's input
file and tomorrow's backup file,
enforces a degree of automatic
checking on the file that will later be
used as a backup file. For it to be
used successfully as an input file, all
its records must be readable and, in
the course of reading it, it is
straightforward to arrange for control
totals of important fields to be
accumulated and checked against
totals held in an end-of-file record.
Therefore, by the time the file
becomes the backup file, its read-
ability and integrity can be assured.
.It is always possible, of course, to
discover at a very late stage that the
file, and all its backup copies, are
incorrect, but that is a slightly
different matter; if integrity failures
are like being handed a rotten apple
instead of a good one, then incorrect
systems are like being handed a
lemon instead. No one wants rotten
apples, but some people ask for (and
get) lemons.

However, once we move on to
random-access databases that are
updated in situ, the updating process
no longer assures us of any integrity
in our backup copies. Problems can
arise because of undetected failures
both in the update and in the
subsequent backup process.

What, in particular, are we
talking about when we discuss
database corruption or integrity? At
the crudest level, we need to know

that the computer is capable of taking
the data off its disc storage and
bringing it into buffers in main store.
This implies that a very large number
of procedures go correctly; the read
heads must be able to position
themselves over the surface of the
disc and detect the presence or
absence of bits on the track, the disc
controller must be able to sort out the
stream of bits into a sensible format,
the central processor must be able to
obtain the block from the disc
controller, and parity checks, cyclic
redundancy checks etc. must all be
passed. However, viewed from the
database system, the check is very
simple; does it get the block that it
asked for? If it does, for every block
in the database, then the first level of
checking, that of block readability,
has been passed.

The next level of integrity is that
of the block contents. The database
management software must be able
to find its way around the block,
distinguishing block headers,
pointers and records. If it cannot do
so because, for example, a field that
should contain a record length
actually contains an impossibly large
number, then, although the block is
readable, its contents are corrupt.

There are, finally, two further
parallel levels of integrity. On the
one hand, pointers must point to
somewhere sensible, e.g. the
beginning, not the middle, of a:
record, and, on the other hand,
records must contain reasonable data,
e.g. dates of births of living people
must normally be in the last hundred
years. If either of these two types of
check fail, then, although the pointers
or records are readable, their contents
are corrupt.

It is plain when we reach this
point that the individual user has a
choice as to what he includes in a
database's integrity and what he
trusts to luck and correctness. The
choice for record contents is
straightforward; if he wishes, he can,
in the course of integrity checking,
repeat all the range checks etc. that
were performed before the data was
allowed into the database. As
discussed below, because recovery
from incorrect record contents does
not normally give too much
difficulty, their correctness is not
usually made a crucial part of the
definition of a database's integrity.

Database Integrity Checking

vol 1 no 6 july 1979 275

Pointers, on the other hand,
present more of a problem. If a
pointer points to a reasonable, but
incorrect, record, then the work of
unscrambling the problem may be
very great indeed. There is therefore
a good case for including a high
degree of pointer checking in
deciding on a database's integrity.
Two devices, both of which must be
included during database design, are
useful. Backward pointers can prove
that a record is not the correct one to
be pointed to; if record A points to
record B, and record B should point
back to record A, then, if it does not,
there is clearly a problem.
Unfortunately, this method does not
provide positive proof of correct-
ness. On the other hand, inclusion of
higher-level keys in records can
provide positive assurance of correct-
ness. In a geographical database, if a
'Road' record points to a series of
'House' records, then, if each House
record contains the Road name, we
can be assured that the pointer
structure is, or is not, correct. We can
provide ourselves with the means of
checking for integrity at the cost of
additional storage space.

A crucial factor in the discussion
of database integrity is the time taken
to recover from failures. It is, in
principle, possible to recover fro m
any failure provided enough backup
copies are kept and enough machine
time is available for reprocessing
after the error has been corrected. If a
database integrity failure is not
discovered until a month after it
occurred, because it was on a
seldom-accessed portion of the file,
then it is clearly possible, in
principle, to identify and correct the
cause of the error, reload the
database to its state of a month
previously, and reprocess a complete
month's input. However, in most
circumstances, this will be
impractical. An important factor in
deciding on an approach to integrity
checking is the amount of
reprocessing time that could be
tolerated in the worst. possible
circumstances. In most installations,
this will be more than 12 h, which
could probably be done in a
weekend, and less than 3 days, which
could not.

One approach to database
integrity bypasses the entire
reprocessing problem by assuming
that any database corruption can be
'fixed' on detection by a database-
mending program, probably using

hexadecimal patching, which takes
very little time to run. Apart from the
fact that, although the database mend
may be short in duration, the
subsequent database backup copy-
taking may not, there is a limit to the
extent of a database corruption which
can be mended reliably by this
means. The amount varies
enormously, depending on the power
of the mending tools and the ability
of the technicians, but it is probably
fair to suggest that database integrity
failures extending over more than a
few physical blocks will normally be
impossible to mend. Certainly it is
not sensible to plan for database
maintenance on the assumption that
all cases of corruption can be dealt
with by mending. Even if the
'mending' approach to recovery is
taken, it is still necessary to be able
to check out the database afterwards,
to give confidence in the correctness
and completeness of the fix.

There is, however, the possibility
of reducing the time to reprocess
while recovering from a database
error; if the entire database is
partitioned, and the database update
processes are structured so that, on
reprocessing, updating can be
constrained to specified partitions,
the reprocessing time is reduced
correspondingly. This assumes, of
course, that the error has been
identified and corrected before
reprocessing takes place. Also,
partitioning of update processes can
only be achieved if the structure is
designed into the programs right
from the start.

The discussion so far has not
answered the question of why we
should want to do integrity checking
at all. It is completely unproductive,
and does not even provide direct help
in recovering from any errors that it
may uncover. The answer is the same
as that which we would give to
someone who refuses to go to the
doctor because he is afraid that he
has a disease and does not want it
confirmed; this would only be a
rational attitude if there were grounds
for belief that he would suffer worse
from the cure than from the disease.
Fortunately, that is no longer usually
true of database management
systems, and the sooner database
corruption is diagnosed the more
easily it can be cured.

The ideal situation is a regular
100% check of the whole database.

With some application systems, it is
possible to incorporate at least part of
this into production runs, particularly
if there is a requirement for 100%
processing of the records of a part of
the database. Normally, however, the
checking has to be done by specially
written programs, unconnected with
other production work, which
progress through the database
ensuring that all possible access
paths remain correct. It is possible to
incorporate record- contents checks
at the same time, but this is not
essential, because records with
incorrect contents can normally be
recovered by deleting them and
reinserting them, without any fixing
or reprocessing being necessary.

Full database checking on a
regular basis mayor may not be
possible, depending on the
operational schedule, although, if it is
not possible in normal circumstances,
a question mark must be raised about
the installation's capacity to function
if some of the equipment fails. In any
case, the checking programs must be
written and available, because there
will inevitably be times after
recovering from errors when a
confidence check is required.

In addition to this, there are very
positive advantages to incorporating
as much checking as possible into the
real-time programs that access the
database. Many database errors are
immediately apparent to the system,
because it finds itself unable to carry
out the requested task, but some are
not so obvious. If, to take the
example used above, a House record
becomes attached to the wrong Road,
it is much better for the system to
discover this at once rather than for a
VDU user to find himself in a
confusing and incomprehensible
situation.

Integrity checking, like a medical
checkup, is about confidence. It will
cost both design effort and machine
time to give a database a regular
clean bill of health, but it can pay for
itself in user confidence and ease of
recovery. J Moffett

