
Core Security Requirements Artefacts

Jonathan D Moffett Charles B Haley Bashar Nuseibeh

Security Requirements Group
Department of Computing
The Open University, UK

{J.Moffett, C.B.Haley, B.Nuseibeh}@open.ac.uk

Abstract

Although security requirements engineering has recently attracted increasing
attention, it has lacked a context in which to operate. A number of papers have
described how security requirements may be violated, but apart from a few hints
in the general literature, none have described satisfactorily what security
requirements are.

This paper proposes a framework of core security requirements artefacts, which
unifies the concepts of the two disciplines of requirements engineering and
security engineering. From requirements engineering it takes the concept of
functional goals, which are operationalised into functional requirements, with
appropriate constraints. From security engineering it takes the concept of assets,
together with threats of harm to those assets. Security goals aim to protect from
those threats, and are operationalised into security requirements, which take the
form of constraints on the functional requirements.

In addition we explore the consequences of the fact that security is concerned
with the protection of assets, while computers only provide interfaces. We show
how to specify the relationship between security requirements and the
specification of software behaviour, using Jackson's Problem Frames approach.

 2

Table of Contents

1. Introduction... 3

1.2 Background ... 3

1.3 Outline of Paper .. 6

2. The Framework ... 6

2.1 Artefacts.. 6

2.2 The Core Artefacts Diagram... 9

2.3 Process Overview.. 13

2.4 Problem Frames .. 14

3. Case Study... 16

3.1 System Business Goals and Functional Requirements 16

3.2 Case Study Part I: from System Security Goals to System Security
Requirements .. 17

3.3 Case Study Part II: From System Security Requirements to Software
Security Specifications ... 20

4. Discussion... 25

4.1 Security Goals ... 26

4.2 Security Requirements .. 27

4.3 Analysing Security Requirements... 31

4.4 Covert Channels .. 33

4.5 A Multi-domain Approach.. 34

4.6 Security Functions ... 35

4.7 Security Policies.. 36

5. Open Issues ... 39

5.1 Security Requirements in the Presence of Implementation Flaws........ 39

5.2 The Need for a Taxonomy of Constraints... 39

5.3 Data-driven Security Requirements.. 40

5.4 Specification Notation... 41

5.5 Risk analysis ... 42

5.6 Scalability.. 42

6. Conclusions ... 42

 3

When you are up to your elbows in alligators, you must never forget
that you set out to drain the swamp. [anon]

1. Introduction

The subject matter of this paper is the description of the core artefacts that are
needed to carry out security requirements engineering; this is the process of
eliciting, specifying and analysing the security requirements of a system. It is a
development of our earlier paper [42].

We propose a framework which integrates the concepts of the two disciplines of
requirements engineering and security engineering. From requirements
engineering it takes the concept of functional goals, which are operationalised
into functional requirements, with appropriate constraints. From security
engineering it takes the concept of assets, together with threats of harm to those
assets. Security goals aim to protect assets from those threats, and are
operationalised into security requirements, which initially take the form of (a
subset of) the constraints on the functional requirements.

This paper has a view of security requirements, based on the following principles:

• The "what" of security requirements – its core artefacts – must be understood
before the "how" of construction and analysis.

• Security cannot be considered as a feature of software alone; it is concerned
with the prevention of harm in the real world. We must therefore consider
both the security requirements of real-world systems and the specification of
software that demonstrably meets those requirements.

• Since security is largely concerned with prevention of misuse of system
functions, security requirements can most usefully be defined by considering
them at the same level as functional requirements, and as constraints upon
them.

Scope of the Framework

This framework has been developed in order to understand the place of security
requirements within the development of an individual application, and our
proposals are limited by that scope. The application will, of course, be developed
in the context of a software operating environment, a hardware environment, and
a human cultural environment. All of these environments will have properties
which impact upon the application. However, we have not covered these in this
paper. In particular, we believe that there are many issues with regard to the
properties of the software operating environment, which need to be tackled in
later work.

1.2 Background

Although security requirements engineering has recently attracted increasing
attention, it has lacked a context in which to operate. This lack was pointed out by
Baskerville [6], where he presents three generations of security design methods:

 4

• Checklists: these are lists of points to be checked, on the assumption that
experience of previous applications can be applied to the current one.

• Mechanistic engineering methods: a process is used, which focuses on
security in isolation from other aspects of system design.

• Integrated design: A development process includes security as a facet of the
whole development.

Unfortunately he was unable to point to any examples of integrated design
methods that were used in practice. His comments apply to design, but it is also
true today that there is no satisfactory integration of security requirements
engineering into requirements engineering as a whole. In this section we review
existing literature, in order to show the truth of this statement, and then motivate
the remainder of the paper by showing why it matters.

1.2.1 Previous Definitions of Security Requirements

Extensive work has been carried out on security requirement during the last few
years. However, there has been a lack of a satisfactory definition of them. Work
on the subject has tended to be carried out independently by the security and
requirements communities.

The Security Community

From the security community side, there are several papers on security
requirements. Tettero [54] defines security requirements as the confidentiality,
integrity and availability of the entity for which protection is needed. While we
accept that this is a clear definition, we will argue below (section 4.2) that it is too
abstract. Lee et al [34] point out the importance of considering security
requirements in the development life cycle, but do not define them.

ISO/IEC 15408 [25] does not define them in its glossary. However, in one place
they are depicted as being at a higher level than functional requirements, but
elsewhere the reference to "security requirements, such as authorisation
credentials and the IT implementation itself" appears to us as being at too low a
level! However, although we do not find the definition of security requirements
very consistent, the inclusion of assurance requirements (the "degree of
confidence" required in the security mechanisms of a system) is important although
we have not attempted to address it in this paper.

The Requirements Community

There have also been several relevant papers on the requirements community
side. Heitmeyer [20] shows how the SCR method can be used to specify and
analyse security properties, without giving the criteria for distinguishing them
from other system properties.

A number of papers have focussed on security requirements by describing how
they may be violated. For example, McDermott & Fox [38], followed
independently by Sindre & Opdahl [50] and elaborated by Alexander [2], describe
abuse and misuse cases, extending the use case paradigm to undesired behaviour.

 5

Liu, Yu & Mylopoulos [37] describe a method of analysing possible illicit use of
a system, but omit the important initial step of identifying the security
requirements of the system before attempting to identify their violations.

van Lamsweerde and colleagues have written several papers on the subject. In the
latest [55] he uses the concept of security goals, but does not define what he
means by security requirement or give an example of one. Antón & Earp [5] use
the GBRAM method to operationalise security goals for the generation of security
policies and requirements, but also do not define security requirements.

Firesmith [15] defines security requirement as "any requirement that specifies a
minimum, mandatory amount of security", which does not take us much further
forward.

None of the above define what security requirements are. On the other hand,
when discussing non-functional requirements, of which he regards security as
one, Kotonya [30] defines them as "restrictions or constraints" on system services
and similar definitions can be found in other text books. Rushby [46] appears to
take a similar view, stating "security requirements mostly concern what must not
happen". Using the Tropos methodology, Mouratidis et al [43] state that "security
constraints define the system’s security requirements". Our own view, elaborated
in the remainder of this paper, is consistent with these definitions: that security
requirements are most usefully defined as requirements for constraints on system
functions.

1.2.2 The Importance of Security Requirements

We distinguish between the goals of stakeholders and the requirements of the
system, as agreed by the customer1. Individual stakeholders may have different
and conflicting goals, which need to be elicited by the requirements engineer. On
the other hand the system's requirements must be free of conflicts, because the
resolution of conflicts between goals is the job of the requirements engineer, not
the implementer.

It is important to know what security requirements are, because the issue of their
definition in actual applications is not trivial. Consider the description of a clinical
information system in [4]. The report presents a view of the security goals of a
Clinical Information System from the point of view of the doctors. It makes
explicit assumptions that the doctors should have control of the system, while the
administrators should be subordinate. It is well known that, in many health
services, there is a power struggle between doctors and administrators. In a
hypothetical system in which that power struggle has not been resolved, we can
consider two hypothetical sets of candidate security requirements. In set 1,
proposed by the doctors, some actions are considered legitimate for doctors, but
prohibited for administrators. In set 2, proposed by the administrators, the
situation is reversed; some actions that would have been legitimate by the
standards of report 1 are security violations, and vice versa. It cannot be left to the

1 As defined in [22] IEEE Recommended Practice for Software Requirements Specifications.

 6

implementers to resolve conflicts between points of view; a requirements
document must state unambiguously what is to be allowed or prohibited to whom;
i.e. what are the constraints that are to be imposed on the use of functions of the
system. Only then can we analyse the requirements for misuses or abuses.

1.3 Outline of Paper

The remainder of this paper is organised as follows. Section 2 introduces the
artefacts and places them in a framework: 2.1 discusses artefacts generally, and
distinguishes between core and support artefacts; 2.2 illustrates the core security
artefacts and their dependencies by means of a diagram (figure 1); 2.3 discusses
the process implications of the dependencies; and 2.4 briefly introduces problem
frames, the notation with which we illustrate the relationship between system
requirements and software specifications.

Section 3 is a case study, which uses the framework concepts and shows how they
are applied. It is in four parts: 3.1 introduces the application; 3.2 shows how its
system security requirements are derived from security goals; 3.3 shows
alternative designs by which the problem frame, consisting of a software
specification interacting with its surrounding domains, satisfies the security
requirements; and 3.4 reviews the case study.

Section 4 expands on our introduction by discussing the main artefacts in the light
of the case study: in sections 4.1 – 4.3 security goals, security requirements and
their analysis are discussed; sections 4.4 – 4.7 cover covert channels, the need for
a multi-domain approach, security functions and security policies.

This paper has inevitably left open many issues, and section 5 considers some of
them: security in insecure systems; the need for a taxonomy of constraints; data-
driven security requirements; specification notations; and the place of risk
analysis in this framework. Section 6 concludes the paper.

2. The Framework

2.1 Artefacts

Requirements engineering rightly concentrates on deciding what is to be done,
before deciding how to do it. This paper follows the spirit of requirements
engineering by concentrating on the "what" before the "how". In this paper we use
the term artefact to describe the "whats", or objects, of security requirements
engineering.

By artefact we mean any object that is created as part of the process of system
development. Typically artefacts are documents, electronic or otherwise, but they
could include physical models, test rigs, and other things. We make the distinction
between core artefacts and support artefacts.

We assume that the system development process has recognisable stages, each of
which produces artefacts that are successively closer representations of a working
system. These are core artefacts. They are ordered in a hierarchy that describe
the system, progressing from the most abstract to the final concrete working

 7

system. This hierarchy is a hierarchy of abstraction, and does not imply the
waterfall model of linear progress; progress may be made concurrently or
iteratively, rather than in a linear fashion. Indeed, we have pointed out in an
earlier paper [44] that requirements and architecture cannot be separated: the
"Twin Peaks" concept.

At early stages core artefacts are typically documents or prototypes. The final
core artefact is the working system itself, consisting of a combination of physical
and software items.

Core artefact documents contain statements of two kinds, following Jackson's
notation [28]:

• Statements that describe the assumed or given structure or behaviour of some
aspect of the system or its environment. These are indicative statements
characterised by the use of "is/are" for factual descriptions.

• Statements that describe the required structure or behaviour of some aspect of
the system. These are optative statements, characterised by the use of "shall".

To give an example, the optative statement that a door shall be secure from
intruders can be achieved in one of two ways 2:

• A high security lock shall be installed on the door, or

• The existing door lock is secure.

The latter statement is a trust assumption [17], which is used to place a bound
upon the extent of analysis that is considered necessary (see also section 2.4
below).

The core artefacts in which we have most interest in this paper are, on the
mainstream requirements engineering side: goals, requirements, and the
components and structure of the system architecture; and on the security
engineering side: assets, threats and control principles.

Support artefacts are artefacts that help to develop, analyse or justify the design
of a core artefact. They may represent formal analysis, informal argument,
calculation, example or counter-example, etc. They are the by-products of
processes whose aim is to help produce verified and valid core artefacts: either
constructive processes which help create them, or analytical processes which test
them, both internally (verified) and in relation to their senior artefacts in the
hierarchy (valid).

We concentrate on core artefacts, because it is their production which drives the
need for development and analysis processes from which support artefacts
emerge. Nothing in this paper should be construed as doubting the importance of
support activities and artefacts, but they are only important to the extent that they
ensure the quality of the core.

2 Plus indicative or optative statements about the door material, hinges, behaviour of people, etc.

 8

Dependencies between Artefacts

In a hierarchy of artefacts, there are dependencies between artefacts. For example,
an operationalised requirement is dependent upon a goal from which it has been
derived, because alteration of the goal is likely to cause alteration of the
requirement. We will call this kind of dependency hierarchical dependency.

There is also a reverse kind of dependency: feasibility. If it proves impossible to
implement a system that satisfies all the optative properties of a requirements
specification, then this will force a change in the goals or requirements; the
higher- level artefact is dependent on the feasibility of the artefacts below it in the
hierarchy.

Although the processes are not the main concern of this paper, the dependency
relationships have an important implication for the structure of development
processes:

• If an artefact is dependent upon the implementation of another artefact for its
feasibility, then if the implementation is not feasible, there must be an
iteration path in the process, back to the ancestor from its descendant.

 9

Management
Control Principle

(Global)

Application
Business Goal

Asset

Threat

Goal

Requirement

Constraint

Operationalises

Elicited from

Mandated by

Harms

Derived from

Operationalises

Figure 1: Security Requirements Core Artefacts
(Class diagram)

Abstract class

Inheritance

Constrains

Dependency

Elicited from

Security Goal

Functional
Requirement

Other Quality
Goals: Reliability,

Usability, etc

Other Quality
Constraints: Reliability,

Usability, etc

Elicited from

Security
Requirement
(Constraint)

Constrains

Implements
Implements

System
Architecture

--
--

--
--

-
G

o
al

s
--

--
--

--
R

eq
u

ir
em

en
ts

A
rc

h
i-

te
ct

ur
e Implements

2.2 The Core Artefacts Diagram

Our view of the core artefacts and their relationships is shown in Figure 1. It is a
class diagram, with dependency associations. Some classes inherit from the
abstract classes Goal, Requirement and Constraint, and these inheritance relations
are shown in grey. The dependency associations are shown as black dashed lines,
and are interesting because the dependencies drive the security requirements
process.

 10

2.2.1 Application Artefact Types

Three columns of application artefact are shown and, in addition, global
management control principles:

• The first column shows the application functionality artefacts that would be
needed even if security were not under consideration;

• The second column shows the additional application quality artefacts that are
needed in order to provide qualities such as usability to the system;

• The third column shows the additional application security artefacts that are
needed in order to provide security to the system;

• Management control principles apply globally throughout an organisation and
provide constraints that would otherwise have to be derived repeatedly for
each security risk analysis. Examples that are directly relevant to security are
the principles of Least Privilege (no one shall have more privilege than
needed for the performance of their duties) and of Separation of Duties (for
important transactions, no single person shall be able to perform all parts of
the transaction).

Application Functionality

This column represents the artefacts that are needed in a conventional life-cycle
model in order to produce a working system. Beyond the structure imposed by
Goals, Requirements and Architecture, we do not intend to place any constraint
on the development process or method that is used.

Application Quality

This column represents the artefacts that are needed in order to provide qualities
such as usability and performance to the system3. They are included in the
consideration of security requirements, as it is typically not feasible to implement
all the desired qualities of a system, and it may be necessary to trade off security
against other qualities.

Application Security

This column represents the artefacts that are needed in order to introduce security
into the system. They are briefly introduced here. More detail of the concepts can
be found in risk management books such as Alberts & Dorofee [1].

• The relevant assets of a system are those assets of the organisation that could
result in harm if the system were misused. They have a dependency upon the
application business goals because the goals will determine which portion of
the organisation's assets may be affected by the system.

• The type of harm that can happen depends upon the asset type, e.g.

3 Security is generally considered to be a "quality", but it is considered separately because it is the
focus of this paper.

 11

Money: loss

Information: exposure, corruption, loss, etc

• The security goals of the system owner are derived from a combination of
three different sources:

The possible harm to assets;

Management control principles;

Application business goals, which will determine the applicability of
management control principles, e.g. by defining those privileges that are
needed for the application prior to excluding those that are not.

Note that other legitimate stakeholders may have other security goals that
conflict with these (see section 1.2.2 above); the set of relevant security goals
may be mutually inconsistent, and inconsistencies will need to be resolved
during the goal analysis process, before a set of consistent requirements can
be reached.

On the other hand, the goals of attackers are not considered to be a part, even
negated, of the security goals of the system, and influence them rather
obliquely. See 2.2.2 below

• The (primary) security requirements of the system operationalise the
security goals by expressing them as constraints on the functions of the
system (see 2.2.3 below). They are dependent on the definition on those
functions, since they are constraints upon them. Like any other set of
requirements, any inconsistencies need to be removed.

It may not be feasible to implement these primary security requirements
without additional functionality. In that case derived security requirements of
the system are added. It may be necessary to revisit the system architecture,
adding security functionality and/or modifying the existing security
requirements.

2.2.2 Security is not Football

The goals of the system owner and other legitimate stakeholders are not directly
related to the goals of attackers, because Security is not Football. It is not a zero
sum game. In football, the goals won by an attacker are exactly the goals lost by
the defender. However, security is different; there is no exact equivalence
between the losses incurred by the asset owner and the gains of the attacker. To
see this, look at two examples:

• Robert Morris unleashed the Internet Worm [52], causing millions of dollars
of damage, apparently as an experiment without serious malicious intent. The
positive value to the attacker was much less than the loss incurred by the
attacked sites.

• Many virus writers today are prepared to expend huge effort in writing a still
more ingenious virus, which causes no or trivial damage (screen message
"You've got a Virus"). Here the positive value to the attacker, judged by the
amount of effort he is prepared to invest, is much greater than the loss
incurred by the attacked site. Generally, there is no simple relationship

 12

between the gains of a virus writer and the losses incurred by those who are
attacked.

The consequences of security not being a zero sum game include:

• The evaluation of possible harm to an asset can be carried out without
reference to particular attackers, with the caveat that, if the impact on the
defender depended on the particular attacker, then the individual attacker
would need to be considered when setting security goals. In the approximate
world of risk analysis, this is unnecessary in practice.

• Consideration of the goals of attackers cannot be used simply to arrive at the
goals of a defender to prevent harm, i.e. their security goals. In view of the
point above, it is not necessary, either.

2.2.3 Security Requirements

We define security requirements to be the constraints, on functional requirements,
that are needed to achieve security goals.

A simple example of such a constraint is:

The system shall not provide Personnel Information except to members of
Human Resources Dept.

Note that the constraint ("shall not … except to …") is secondary to the function
("provide Personnel Information"); it only makes sense in the context of the
function.

There may also be temporal constraints:

The system shall not provide Personnel Information outside normal office
hours;

and complex constraints on traces:

The system sha ll not provide information about an organisation to any
person who has previously accessed information about a competitor
organisation (the Chinese Wall Security Policy, [9]).

Availability requirements will need to express constraints on response time:

The system shall provide Personnel Information within 1 hour for 99% of
requests.

We note that this differs only in magnitude from a Response Time quality goal,
which might use the same format to require a sub-second response time.

This paper does not claim to provide a complete taxonomy of constraints nor,
since this is a framework rather than a process or method, does it attempt to
mandate a specification language. There are discussions of some of the issues in
sections 5.2 and 5.4 below.

 13

2.2.4 Goals, Requirements and Architecture

The horizontal view shows three phases of development of the artefacts: Goals;
Requirements; and Architecture. We indicate briefly here what we mean by each
of these terms:

• Goal: something that any stakeholder wishes to achieve or avoid.

• Requirement: a functional requirement, which describes a function to be
provided by the system in terms of an operation that can be used by an agent;
or a constraint on a functional requirement. The constraint is an expression of
a security or other quality requirement, e.g., performance, usability, etc.

• System architecture: a description of a means of achieving requirements, in
terms of the interactions between relevant domains. The problem frame
approach that we use for our case study is one such description; it describes
how a software specification in a structure of domains satisfies system
requirements.

2.3 Process Overview

The dependencies among the core artefacts influence the possible ways in which a
security requirements process can be constructed. The process diagram is shown
as figure 2; the following points should be noted:

• There are two columns, corresponding to the "normal" application
development process and quality goals, and the development of security
requirements. It is assumed that no explicit activity is needed to elicit the
organisation's control principles, and these can therefore be fed directly into
the Identification of Security Goals activity.

• Lines coming out of the bottom of an activity box indicate the successful
completion of an activity and, except for Validation boxes, carry with them a
core artefact into the next activity.

• Lines coming out of the side of an activity box denote failure and imply the
need to iterate back up the process in order to revise an earlier activity. Failure
can be one of two kinds:

• It has been found to be infeasible to create a consistent set of the artefacts
that are constructed by that activity, or

• Validation of the artefacts against a higher level, e.g. validation of security
requirements against security goals, shows that they fail to meet their
aims. This occurs if it has not been possible to construct a satisfactory
correctness argument or a vulnerability has been found (see section 4.3.2
below).

The iteration may "cascade" upwards if the architecture is not feasible without
a revision of the business or security goals.

 14

[Not feasible]

Scope the Application

Elicit/Revise Application
Business Goals & Quality Goals

Elicit/Revise Functional
Requirements

Identify/Revise & Verify
Security Goals

Elicit/Revise Assets

Elicit/Revise possible
Harm

Application scope

Goals

Assets

Possible Harm

Validate Security Goals
against Assets, Threats

and Business Goals

Security goals
[Feasible]

[Not OK]

[OK]

[Not feasible]

Construct/Revise &
Verify Security
Requirements

Validate Security
Requirements against

Security Goals

Security requirements
[Feasible]

[OK]

Construct/Revise &
Verify System
Architecture

Validate Security of
System Architecture

against Security
Requirements

System Architecture
[Feasible]

[OK]

[Not OK]

[Not OK]

[Not feasible]

Functional
requirements

Security Validation

General System Activity

Security Activity
(Construct/Verify)

Figure 2: Security Requirements Process Overview (Activity Diagram)

Goals

2.4 Problem Frames

We use a notation based on Jackson's Problem Frames [28] as a tool in our case
study (section 3.3 below) to help derive software security requirements. This
section presents some background information on problem frames. We do not

 15

claim that this is the only possible approach, but it is the most useful one of which
we are aware.

In common with other approaches, such as the Concert framework [56], the
Problem Frames approach recognises that requirements can exist at several levels
of abstraction. In this approach the focus is on the relationship between
requirements on the real world system, which Jackson calls simply
"requirements", and requirements on the software, which he calls the
"specification". Where there is any ambiguity, we refer to the former as system
requirements" and the latter as the software specification.

When using problem frames, a requirements engineer describes problems by
describing the interaction of domains. The notation describes the domains in a
problem along with the interconnections between them. For example, in our case
study (section 3.1 below) the requirements elicitation process for an automatic
door produces the need for a machine4 to display personnel information on
request, with requirement the system shall display personnel information to the
requestor. Figure 3 shows the initial problem description. There are only two
domains: the Personnel Information Machine, conventionally shown with two
bars in the box to denote that it will be the subject of the software specification;
and Person, containing people. The requirements are shown in the oval with a
dashed line. The connection between the domains is shown by a line between
their interfaces. It is labelled a to give a reference to a description of the
interaction phenomena between the domains. In this case there are two:

P!{Payroll#} and PIM!{PersonInf(Payroll#)}

P! and PIM! denote that the phenomena are initiated by the Person and machine
domains respectively, followed by the contents of the phenomena; P can supply a
payroll number, and PIM can return the personnel information for that payroll
number.

Correctness Arguments

A major aim of this approach is to show, by means of a correctness argument,
that the problem frame's domains, interactions and specification will satisfy the
system requirements. This argument may be both positive and negative:

The positive argument will attempt to demonstrate why the problem frame
satisfies the requirements. However, it is often impossible to produce a complete
formal proof of this.

The negative argument tests the problem frame by searching for contradictions to
the argument. In the case of security requirements these are called vulnerabilities.
A vulnerability is discovered, as described by van Lamsweerde [55] in a different
context, by negating the requirement and then attempting to show that the

4 In our view of problem frames the machine may be an abstract entity; for example, the Personnel
Information Machine and Credentials Administration Machine that are discussed in 3.3.3 might
both be implemented in the same physical computer.

 16

negation of the requirement can be satisfied. They are discussed further in section
4.3.2 below.

Further Notation

We have found it necessary to extend beyond the standard notation of Problem
Frames in order to describe security requirements adequately, in two respects:
trust assumptions; and a causal specification language.

We introduce trust assumptions [17] in order to make explicit the assumed
properties of domains on which the satisfaction argument depends. They are
denoted by ovals with irregularly dashed lines. Examples are found in our case
study, e.g. section 3.3.2 below.

The use of a causal specification language is needed because Jackson's book on
Problem Frames uses state-machine diagrams for the specification of required
software behaviour. Although guards on transitions can be shown in this notation,
they are guards whose satisfaction is sufficient to enable behaviour. Security
constraints need stronger guards also, whose satisfaction is necessary to enable
behaviour. We are therefore using, as our specification language, a causal
notation derived from our earlier notation [41] to describe a machine or domain
specification. The relationship between the interactions described above is
specified to be:

P!{Payroll#} shall cause PIM!{PersonInf(Payroll#)}

shall cause prescribes that the first interaction shall always result in the second
one. The other element of the notation that we use in this paper is shall prevent,
which prescribes that the first interaction shall always prevent the second one
from occurring. It overrides shall cause.

3. Case Study

This case study, of a Personnel Information display system, is used to illustrate
the framework that we have set out above and to bring out further issues for
discussion. It is unrealistically simple, to enable points to be illustrated easily.

We use an informal notation for goals, and a notation for requirements that is
based on Problem Frames, as discussed in section 2.4 above.

3.1 System Business Goals and Functional Requirements

We assume that the business goals have been elicited and that there is only one
goal:

G1: Provision of people's personnel information to them.

We assume that initial requirements have been elicited and that there is only one
functional requirement:

 17

REQ1: On request from a Person (member of People), the system shall
display personnel information (PersonInf) for a specified payroll number
(Payroll#) to that Person.

The problem frames diagram shown in Figure 3 is a first attempt at representing
the requirement. It shows a Person interacting with the Machine, as a result of
which specified personnel information is displayed.

a: P!{Payroll#}
PIM!{PersonInf(Payroll#)}

Figure 3: Initial Problem Description

The system shall display
personnel information to

the requestor

Personnel
Information

Machine (PIM)

Person (P)

a

The specification of the behaviour of the PIM is:

1. P!{Payroll#} shall cause PIM!{PersonInf(Payroll#)}

3.2 Case Study Part I: from System Security Goals to System
Security Requirements

In this section we will first discuss how to derive security goals and then how to
obtain security requirements for this application.

3.2.1 Security Goals System Security Risk Analysis (Assets & Harm)

Asset Identification

Examination of the business goal G1 reveals only one relevant asset: personnel
information. Other assets would need to be considered in a fuller example,
including: tangible assets such as money, products, or the computers themselves;
and intangibles such as reputation.

Harm Identification

There are at least the following types of possible harm to personnel information:

H1: Unauthorised disclosure.

H2: Unauthorised alteration.

 18

H3: Unavailability.

Security Goals

Having identified the relevant harm, we need to take the step of stating security
goals for this application, the prevention of relevant harm:

SG1: Confidentiality: Prevent unauthorised disclosure of personnel information.

SG2: Integrity: Prevent unauthorised alteration of personnel information.

SG3: Availability: Ensure availability of personnel information.

3.2.2 From Security Goals to Security Requirements

We have now derived and valued the organisation's security goals for a particular
kind of asset. These goals need to be related to the possible behaviour of the
system, i.e. its functional requirements, in order to be expressed as security
requirements, i.e. constraints on those functional requirements.

Each security goal needs to be examined for possible relevance, and then the
goals must be operationalised to derive constraints on functional requirements.
Two separate tasks have to be carried out:

• Use domain knowledge to transform the entities described in the security goal
into entities described in the functional requirement. In this case the task is
trivial, as the security goals directly refer to personnel information.

• Transform Confidentiality, Integrity and Availability into constraints on the
operations that are used in functional requirements.

Security Requirements for Confidentiality

In order to derive constraints for Confidentiality, we need to know who is
authorised to access personnel information. In this case we assume that only
members of Human Resources (HR) Department are so authorised. We can
therefore state the following constraint:

REQ1/SR1: The machine shall display personnel information only to
members of HR Dept.

This is the application's only security requirement for Confidentiality

Security Requirements for Integrity

Integrity is about ensuring that assets are not altered without authority, but none
of the operations of the Personnel Information Display System alter information,

 19

so there are no constraints on operations that are derived for this security goal.
This application has no security requirements for Integrity. 5

Security Requirements for Availability

An Availability goal will be translated into temporal constraints on every
functional requirement, but for brevity we do not pursue it here.

Correctness Argument

Although we are not working with problem frames in this section, it is till
appropriate to attempt to make a correctness argument, that our security
requirements will satisfy the security goals. At an informal level, this has been
carried out by the paragraphs above. At a practical level, the analyst may wish to
question the step from "authorised" to "members of HR Dept". Is this a necessary
and sufficient set of people? What about senior managers? Should all members of
HR Dept be authorised? For the purpose of this example, we will assume that the
requirement is correct.

3.2.3 Security Requirements Model

The security requirements and their context for this system are shown below in
figure 4. This is a simplified instantiation of the meta-model of figure 1; only
security goals are shown.

Personnel
Information :

Asset

Disclosure,
Alteration ,

Unavailability:
Harm

Harms

Derived from

Operationalises

Figure 4: Security Requirements for Payroll
Information Display System

Constrains

Confidentiality,
Integrity,

Availability:
Security Goal

Req1 Display
personnel

information: FR

Req1/SR1 Only
Display to HR

Dept: SR

5 We assume that there is a requirement for accuracy regardless of whether the application has any
security goals, and do not consider accuracy in this paper.

 20

3.3 Case Study Part II: from System Security Requirements to
Software Security Specifications

In this part we will examine how a Software Security Specification can be derived
from the derived System Security Requirements. Note the difference between
requirements REQ1 (section 3.1) and REQ1/SR1 (section 3.2.2):

• REQ1 is a functional requirement upon the behaviour of the Machine, and
will therefore be (in transformed form) a part of the software specification.

• The security requirement REQ1/SR1 is a constraint that could be applied
either in the Person or the Machine domain. It can be achieved either by:
restricting membership of the Person domain to members of the HR Dept; or
by ensuring that the Machine domain is able to identify whether or not a
request has been submitted by a member of HR Dept, rejecting it if not.

A design decision is therefore needed before we can deal with the impact of the
security requirement REQ1/SR1on the Machine.

3.3.1 Introducing the Security Requirements into the Problem Frame

The problem frame diagram in Figure 3 does not show how the security
requirement REQ1/SR1 fits into the picture. There are two issues that have to be
resolved by system design decisions:

• Where should the security constraint be implemented – in the Person domain,
the Personnel Information Machine domain, or both?

• How should we introduce meaning to "members of HR Dept"?

At the risk of repetition, we stress that this is a system design decision, in the
domain of system engineering. It may or may not have an impact on the problem
frame diagram, in any of the following ways:

• Adding constraints to the machine specification or the properties of other
domains

• Altering the interactions between domains

• Introducing additional domains to the problem.

We will first deal with the first question, which is relatively straightforward,
before discussing the issue of representation of identity in answer to the second
one. What follows is an informal architectural design exercise for the system.

3.3.2 Constraining the Person Domain

We could solve the security requirement by requiring the Person domain to
contain only members of HR Dept, which states that no one but HR Dept
members can interact with the machine. Although this is not a detailed design
exercise, we illustrate some ways in which this might be achieved:

 21

• By physically isolating the machine from any network and using physical or
procedural access control (either a lock or a guard to prevent unauthorised use
of the machine)

• By using a network firewall to prevent access from any terminals except those
in HR Dept, for which physical or procedural protection is in force.

If we make either of these design decisions, then REQ1/SR1 is satisfied outside
the machine domain, and there is no need to consider REQ1/SR1 in the machine's
software specification. The Problem Frame diagram in Figure 5 presents a
solution using a locked room approach.

Figure 5 illustrates one of the principle uses of trust assumptions, limiting the
scope of an analysis. To ensure that REQ1/SR1 is truly discharged, the analyst
would in theory be required to examine how access to the room is limited to HR
Dept members, bringing structural integrity and key management into the
problem. The trust assumption obviates this need by simply stating that the
analyst trusts the stated indicative property (that access is limited to HR Dept
members) is true, thereby justifying changing the domain membership from
People to HR Dept Members.

 Figure 5: Design with Locked Room

The system shall display
personnel information to

people, but only if they are
members of HR Dept

Personnel
Information

Machine (PIM) in
locked room

HR Dept Members
(HRDM)

a

Trust Assumption:
Only HR Dept members

can enter room

a: HRDM!{Payroll#}
PIM!{PersonInf(Payroll#)}

The specification of the behaviour of the PIM is identical to that of the original
problem description (section 3.1 above), because the PIM has no part in
implementing the security requirement :

1. HRDM!{Payroll#} shall cause PIM!{PersonInf(Payroll#)}

 22

Correctness Argument

The positive correctness argument for meeting the security requirement is
straightforward:

• The only way to use the machine is by entering the room

• The only people who can enter the room are members of HR Dept, thus
satisfying the security requirement.

The negative argument tests each of these steps in turn. Are there any
vulnerabilities in the statements that:

• the only way to use the machine is by entering the room? In this case the
analyst was sufficiently confident that a trust assumption was not thought to
be necessary.

• the only people who can enter the room are members of HR Dept? Here the
analyst had sufficient doubt about it that a Trust Assumption was attached to
this statement. The risk behind the trust assumption will need to be accounted
for during a security risk analysis exercise.

3.3.3 Security Constraint in the Machine

We now consider the issues involved in implementing the security constraint in
the machine, instead of (or as well as) in the People domain. It will now be
necessary to include some information relating to the identity of the requestor in
the interaction between P and PIM. There are several possibilities for changing
the P! and/or the PIM! interactions.

To illustrate the number of design possibilities, here are two that we reject:

• Encrypting the information in the PIM! interaction so that it can only be
understood by a member of HR Dept. This has the disadvantage of needing a
lot of functionality in the Person domain and, without some elaboration, is
inflexible.

• Include a constant password (known to all members of HR Dept) in the P!
interaction, and "hard code" knowledge of the password in the Machine. The
Machine is required to refuse the request unless the password is correct. This
is cheap to implement, but suffers from the obvious vulnerabilities of shared
and unchanging passwords.

Instead we will use a simple version of user identification and authorisation in
which, with each request, the Person provides a User Id and credentials. UserId is
the claimed identity of the person who submits the request. Credentials are
authentication information, such as a password, that provides assurance that the
interaction has actually been initiated by the person who is identified by UserId.

This design decision is attractive for a variety of reasons, including:

• Use of a personal identity makes it possible to provide Accountability (which
requires verification of who has carried out an action), which is often an
organisational goal.

 23

• Use of a user / credentials combination is familiar, implementable in standard
ways, relatively cheap and adequately secure for many purposes6.

The original requirements are unchanged, but there are two additional functions,
which we assume are already in existence, for giving people their UserId and
credentials, which are stored in a Credentials Store.

FUN1: Administrators shall give UserId and credentials to members of the
HR Dept.

FUN2: Administrators shall store UserId, credentials and HR Dept
affiliation in the credentials store, for members of the HR Dept.

Correctness Argument

Since we have changed the problem frame, it is necessary to iterate the
correctness argument, that these requirements satisfy the system goals. However,
since the security requirement is unchanged, we do not need to do this here.

PIM Problem Frame

The design is shown in figure 6. Each time a request is submitted, PIM submits
the UserId and credentials for validation, and only fulfils the request if they are
valid.

b: P!{ UserId, credentials, Payroll# }
 PIM!{ PersonInf (Payroll#) | No }

c: PIM!{ Validate(UserId , HR, credentials) }
 CS!{ Yes | No }

Figure 6: Design with Authentication

The system shall display
personnel information to

people, but only if they are
members of HR Dept

People (P)

c

Trust Assumption
Presentation of UserId

with valid HR credentials
means person is member

of HR Dept

Personnel
Information

Machine (PIM)

Credentials storage
(CS)

Trust Assumption
Credentials storage is
correctly administered

and secure

b

The specification of the behaviour of the PIM system is now as follows:

1. P!{ UserId, credentials, Payroll#} shall cause
PIM!{ Validate(UserId, HR, credentials) }

2. if isValid(UserId, credentials))
 PIM!{ Validate(UserId, HR, credentials) } shall cause CS!{Yes}
else PIM!{ Validate(UserId, HR, credentials) } shall cause CS!{No}

3. CS!{Yes} shall cause PIM!{ PersonInf(Payroll#) }

6 Of course it also has certain well-known vulnerabilities, which would need to be considered in
the risk analysis.

 24

4. CS!{No} shall cause PIM!{ No }

The truth or falsity of the isValid predicate is determined by the contents of the
Credentials Store.

Correctness Argument

The positive correctness argument for meeting the security requirement is as
follows:

• The only way for a person to use the machine is by entering a request
including UserId and credentials

• The only people who can present a UserId with valid HR credentials are
members of HR Dept

• The machine will not satisfy that request without first validating the
credentials by an interaction with the credential store.

• The credentials store will only return Yes if the UserId is for a member of HR
Dept and has valid credentials.

• The machine will not satisfy the request unless the answer is Yes.

Again, the negative argument tests each of these steps in turn, highlighting those
that are in doubt by means of trust assumptions.

Credentials Administration Problem Frame

Since the administration of identities and credentials has entered the problem, our
problem frame context needs to be expanded.

Figure 7 shows how credentials are administered, showing that a human
Administrator gives a UserId, Dept affiliation and credentials to People, and then
provides the same information to the Credentials Administration Machine
(CAM). This causes the CAM to store the information in the Credentials Store.

The specification of the behaviour of the CAM machine is as follows:

1. A!{create(UserId, Dept, credentials)} shall cause
CAM!{store(UserId, Dept, credentials)}

 25

Credentials storage
(CS)

f

d: A!{give(UserId , Dept, credentials)}

e: A!{create(UserId, Dept, credentials)}

f: CAM!{store(UserId, Dept, credentials)}

Figure 7: Administration of Credentials

People (P)

d

Trust Assumption
Administrator will ensure
that Person is member of

Dept

Administrator (A)

Trust Assumption
Only adminstrators
can access CAM

Trust Assumption
Credentials storage is

secure

Trust Assumption
Administrators are

honest

eCredentials
Administration
Machine (CAM)

Administrator shall give
UserId, Dept and

credentials to people and
store them in Credentials

Store

3.4 Review of the Case Study

What steps did we go through in our attempt to define the requirements for a
workable secure system? We can identify the following:

• An initial definition of system requirements and problem frame in section 3.1

• A revised definition of the system requirements to include security
requirements, in section 3.2.2

• Introduction of the security requirements into the problem frame in section
3.3.1, using the UserId approach, which is infeasible with the original
Problem Frame

• A solution, using the UserId approach, in section 3.3.3. This was infeasible
with the original problem frame. The problem frame needed modification.

• Since the problem frame had changed, it was necessary to iterate the
correctness argument, that the requirements met the goals, although this was
trivial in this case

• This finally enabled us to define a software specification that, given the trust
assumptions, could be argued to satisfy the system requirements.

4. Discussion

A number of issues have arisen in the course of expounding our view of security
requirements artefacts.

 26

4.1 Security Goals

4.1.1 Characteristics of Security Goals

An organisation's security goals have some characteristics which make them hard
to manage:

• They cannot immediately be discharged by the specification of requirements,
but have to be re-interpreted at each iteration of the design.

• They may interact with each other.

Security Goals are not Discharged by Security Requirements

At every iteration between requirements and design, whenever a new functional
requirement is introduced that requirement must be evaluated against the security
goals and appropriate security requirements introduced. One cannot assume that
the existing security requirements are sufficient in the presence of new functional
requirements.

For example, although some security requirements may be necessary to achieve
the Confidentiality goal, they may not be operating in isolation. We will assume
that there is also an Availability goal to be achieved, and that one of the means of
achieving Availability is to perform regular data backups. A Backup functional
requirement will therefore be introduced at a later iteration of our requirements.
This implies in practice that a copy of the information exists that can be read
using a function that was not defined in our original requirements. Unconstrained
use of this function can violate the Confidentiality goal, and therefore there will
need to be a security requirement that constrains its use. At a still later stage, an
engineer's access to the Machine for maintenance purposes can also provide
access to the information, using yet another function, which generates yet further
security requirements.

The original security goal has not changed, but at each iteration of the
requirements, when additional functions are introduced, additional security
requirements to constrain the use of those functions may need to be added.

Security Goals Interact

Security goals interact. For example, it might be decided to introduce an
encryption function in order to achieve Confidentiality. This is a new function for
the system, and its use must be evaluated against all the security goals. One of
those goals is Availability, and analysis shows that Availability is threatened by
the loss of a secret key; our solution to confidentiality has undermined
Availability. Therefore further measures need to be taken to ensure that the
Availability goal is still met, either by ensuring that the secret key is always
available or by reconsidering the design decision.

 27

4.1.2 Are All Security Goals Negative?

Most security goals should be represented as the avoidance of harm. We have
sympathy with the view of van Lamsweerde in [55], where only Confidentiality is
described as an Avoid goal, with Integrity and Availability being Maintained and
Achieved. However, it is necessary to consider the amount of possible harm in
order to decide how important each goal is.

We are leaving it as an open question at present whether there are other
application security goals, which do not need to be related to the possibility of
harm to assets. For example:

• Is Anonymity a separate goal, or is it better regarded as a means of achieving
a goal such as Confidentiality?

• Should provision of the Provenance of information, to help judge the amount
of reliance that can be placed on the information, be regarded as a separate
goal?

In neither case do we have a definitive answer.

It is clear that other security goals can be stated directly, if they arise from an
organisation's management control principles, derived from previous experience
of the need for security. For example, the Principle of Least Privilege – that no
one should have more authority than is needed to carry out there duties – may
have been adopted generally by an organisation. It can be used directly to derive
system security requirements without the need fo r a detailed consideration of
possible harm. However, the lack of a "value" – an assessment of the amount of
harm that it prevents – for a goal of this kind makes it more difficult to manage
when trade-offs become necessary.

4.1.3 Derived Security Goals

Where do security goals come from? The obvious source is as described above,
from threats of harm to an organisation's assets, e.g. a bank's goal not to lose its
own money.

However, they may arise indirectly from other goals. An example of this is a
bank's goal to maintain a good reputation. A necessary condition is that it should
be able to demonstrate its commitment to protect its customers' money, in
addition to its own. Therefore there is a derived goal – protect customers' money –
which depends upon the bank's Reputation goal. So, eliciting security goals
cannot be done from a narrow security perspective; all of the organisation's main
goals have to be taken into account.

4.2 Security Requirements

4.2.1 Why Define Security Requirements at all?

As remarked in the Introduction, there seems to be a curious reluctance in
previous published work to define any explicit representation of security
requirements. We have already made the point in motivating our work (section

 28

1.2.2 above) that their representation is important because of the possibility of
conflict between stakeholders. In addition, since traceability of requirements is
essential, we need to be able to refer to each individual security requirement.

If we accepted that it is necessary to be able to refer to security requirements, why
have we chosen to define them as constraints? We do not claim to be correct in
defining security requirements as constraints on functional requirements; we are
proposing a software engineering approach, not carrying out scientific research.
Our reasoning for proposing this as a useful definition is as follows:

• Requirements specifications, in general, describe the functions (or operations
or services) to be provided by a system.

• It is clearly desirable for the specification to describe security requirements in
a way that enables them immediately to be related to the functions.

• Constraints upon functions are a natural way to do this.

Other candidate forms for security requirements, which we have rejected, are:

• Security goals. Security goals are necessary as a starting point, but they are
more abstract than functional requirements, and may conflict. If designers
were only given security goals to work with, it would be necessary for them to
carry out further work that belongs in the domain of the requirements
engineer: deciding how the security goals should be operationalised in the
requirements; and resolving conflicts when necessary.

• Security functions. A security function such as encryption is part of the
solution, and the specification of security requirements in terms of security
functions may lead to a non-optimal and/or an incomplete design.

It appears to us that, in order to ensure that requirements engineers and system
designers each work within their appropriate limits, the appropriate boundary
between security requirements engineering and security design is provided by our
proposal.

Why a Software Security Specification Cannot Be Considered Alone

We are insisting that security requirements must be regarded as a systems
engineering problem, and that software security cannot be considered on its own.
This contrasts with Michael Jackson's explicit focus [28] on the computer and its
software. There are several reasons for our approach, which needs a broader
approach than his because the concerns are wider:

• Security goals, unlike functional goals, cannot be discharged by the
specification of a suitable constraint or function; they must be considered at
every iteration of the development activity.

• Security analysis needs to consider several domains simultaneously.

• Security requirements may constrain domains other than the machine.

• Security principles, hard-won by experience, require a systems approach.

 29

4.2.2 Residual Security Requirements?

It is often stated that security is only as strong as its weaknesses, and it is
therefore important for it to be complete. We must therefore ask whether, by
specifying constraints on the functions that are to be provided by an application,
we have produced a complete set of security requirements?

If we assume that we have a complete statement of the organisation's security
goals, and have taken them all into account in deriving the constraints, then the
answer is Yes. It would be tempting to include another requirement for an
application: "and nothing else must happen" so as to ensure that the designers do
not assume that they need do nothing else to ensure a secure system.

However, we have no means of expressing what we mean by "nothing else", so
we are stating a general goal, rather than providing a specification of security
requirements to a designer, and there is no point is adding "and nothing else" to
the security requirements. However, we should recognise that the security goals
have not been discharged by the specification of constraints on system functions;
that is a necessary, but not sufficient, condition for the satisfaction of the security
goals by the implementation.

This is a proper separation of concerns. To take an example from the case study,
the organisation has a security goal of Confidentiality of Personnel Information. If
it is to achieve this goal, then it will have to state security requirements on a
number of activities and domains, including securing the engineer’s hardware
interface and communications infrastructure. By proposing a new application we
have introduced some additional functions by which the security goal could be
breached and the security requirements for the new application is properly and
completely expressed as appropriate constraints on the functions.

Two issues arise:

1. Additional functionality introduced in the design;

2. The properties of the machine within which the application is embedded.

Additional Functionality Introduced in Design. When the system requirement
results in a design, then the implementation of that design may result in additional
functions, adding ways in which security goals could be violated, e.g. through the
engineer’s hardware interface or through a hacker intercepting communications.
In order to achieve the organisation’s security goals, additional operational
security requirements will need to be derived, from the security goal, for the
engineer’s system and the communications infrastructure.

Machine Properties. The application will almost always be run on an existing
operating system and using existing utilities. This software will provide additional
functionality, and therefore expose the application to additional risks. Analysis of
these risks is essential, and the security requirements for the application will need
to take them into account, but the risk analysis of this software is independent of,
and prior to, the development of security requirements for the application.

 30

So, our conclusion is that, if the analysis has been done thoroughly, the security
constraints do constitute the complete set of security requirements for the
application as far as it is understood at that point. However, the organisation's
security goals are never discharged until there is an implemented system, and the
security goals must be revisited whenever additional functionality is proposed
during the course of development.

4.2.3 Security Requirements and Security Properties

Security "properties" are often referred to, especially in formal specifications; for
example, Heitmeyer [20] gives examples, some of which are predicates on state,
and others predicates on the relationship of successive states. We need to consider
how they fit into this framework. Most security properties are expressed in terms
of constraints on traces of the behaviour of a system, and this fits in very well
with our own view of security requirements as constraints on the operations of a
system. It emphasises that realistic security requirements are likely to be far more
complex than the simple constraints that we have used in this paper.

Some security properties may, of course be expressed at a lower level than system
requirements, and it will only be possible to discuss them at that lower level.

There are security properties, such as "no covert channels", which do not conform
to the constraint model. They are like the "and nothing else must happen"
requirement of section 4.2.2 above, and we take the same view, that they are not a
concern for system security requirements, but must be addressed at a design or
implementation level.

4.2.4 Quality Constraints and Security Requirements

A set of requirements can contain many constraints on functions, derived from a
variety of goals, e.g. constraints arising from all the other quality goals that are
relevant to a system, such as performance and reliability. If we examine a
constraint, such as the following, how do we know that it is a security
requirement?

The machine shall not display Personnel Information except to members
of HR Dept.

The answer is, we cannot identify this as a security requirement from its contents
alone. Why not? Consider a hypothetical Personnel Information Display System
in an environment in which the honesty and discretion of all users has never been
in any possible doubt, so that the organisation has no need of any security goals at
all. However, it has a goal of Comprehensibility, and the Personnel Information is
so difficult to understand that it is considered essential for all information to be
interpreted by members of HR Dept, rather than being directly available to all
users. Then, although there is no Confidentiality goal, the constraint has been
derived in order to satisfy the Comprehensibility goal, and it would be reasonable
to call it a comprehensibility requirement, not a security requirement.

From this we conclude that any particular constraint is identified as a security
requirement by the source goal from which it is derived, and not from its contents.

 31

Of course, a constraint can be derived from multiple goals and therefore belong to
multiple categories.

4.3 Analysing Security Requirements

Although this paper is not about analysis, some comments about its role are
needed. We make the conventional distinction between verification and
validation:

• Verification is about the analysis of an artefact on its own, ensuring its
completeness and internal consistency;

• Validation is about the relationship of the artefact to the artefacts from which
it is derived: in the case of goals and requirements, whether the system
requirements satisfy the system goals and whether the software specification
satisfies the system requirements.

We demonstrate, using a very simple example from our case study, that analysis
is possible and useful at an early stage. There is a security requirement that People
who are not members of HR Dept are prohibited from displaying personnel
information. Analysis (in this case informal) shows that this constraint does not
prohibit a member of HR Dept who is currently suspended, possibly because of
allegations of dishonesty, from seeing personnel information. This will certainly
be regarded by the customer as an example of unauthorised access, so that the
security requirement, as stated, is invalid. A more tightly specified security
constraint is needed and will be straightforward to generate.

4.3.1 Internal Analysis (Verification)

Security requirements are simply a set of statements, and are therefore subject to
the same kind of internal analysis as any other similar set. Taken as a whole are
the functional requirements and their associated constraints complete and
mutually consistent? For example, security constraints can be mutually
inconsistent or conflict with safety constraints. This verification activity is not
special to security requirements, and we do not discuss it further.

4.3.2 External Analysis of Security Requirements (Validation)

Even if internal analysis of the requirements has verified that they are consistent,
validation is still necessary at two stages.

• Are the system security requirements a valid refinement of the security goals?

• Is the problem frame, including its software security specification and trust
assumptions, a valid refinement of the system security requirements?

At each stage there are two kinds of analysis that are appropriate:

• Construction of a correctness argument, that the refinement is correct;

• Vulnerability analysis: the discovery of flaws in the system security
requirements so that they do not satisfy the security goals (first stage); or

 32

flaws in the problem frame so that it does not satisfy the system security
requirements (second stage).

Correctness Arguments

Correctness arguments are seen by Jackson as an integral part of the problem
frames approach and there is no reason why the introduction of security
considerations should affect this. Ideally, a proof of correctness would be all that
is needed, but a variety of factors, including ambiguity of descriptions, false
assumptions, incomplete specification of the context and the complexity of
systems, mean that vulnerability analysis is always necessary.

Correctness arguments have two kinds of va lue:

• They give confidence that the initial design is, at least prima facie, correct;

• They are one way of providing structure to the process of vulnerability
analysis.

Vulnerability Analysis

Vulnerability analysis finds weaknesses in a design, which show that it does not
satisfy its requirements. van Lamsweerde [55] demonstrates vulnerabilities in
software by showing that the software is able to satisfy the negation of a security
goal. In doing this he demonstrates an important aspect of vulnerability analysis;
it validates a lower-level artefact against a defined higher- level one. By contrast,
Liu, Yu & Mylopoulos[37] and Lin et al [36] both describe methods of analysing
possible "illicit" use of a system, but neither define the requirements or goals that
this illicit use violates.

One of the difficulties for vulnerability analysis is to propose a methodical
approach to discovering vulnerabilities. In the past this has been done by attack
teams who rely upon ad hoc methods; it seems likely that most of the flaws
described by Landwehr in [32] were discovered in this way. Proposals for tree-
structured methods, such as Schneier's Attack Trees [49] suffer from two
disadvantages:

• They do not provide any initial structure from which to start the analysis

• There is no way of knowing whether enough branches have been discovered.

The safety critical world has developed a more methodical approach, based on
HAZOPs [29], a systematic method of describing what can go wrong in a
chemical plant by applying key words such as TOO MUCH, or TOO LATE to
each element of the plant. Any deviations that are discovered can be pursued in
two directions, by means of cause-consequence analysis:

• Cause analysis follows an attack tree downwards in a search for
vulnerabilities

• Consequence analysis searches upwards to discover what harm might result
form the deviation.

 33

This has been extended to software and, more recently to requirements by
Srivatanakul et al in [53], which applies the HAZOPs technique to UML use
cases. This provides some assurance of completeness of coverage, on the
assumption that the use case describes all possible happenings. Also, it gives a
structure to the start of the vulnerability analysis.

Another possible approach is to generate vulnerabilities by considering each step
of the correctness argument in turn, which we have found useful in removing
errors from our own case study, but we are not aware of any systematic work on
this.

Our own work [17] on trust assumptions provides a focus point for discovering
vulnerabilities, by considering the consequences of failure of the assumptions.
Our work on threat descriptions [18] helps to locate the points where trust
assumptions are necessary by considering where assets are used.

Other published work on vulnerability analysis has come from three areas:

• Goal refinement

• Abuse and misuse cases

• Abuse Frames.

Goal Refinement

The extension of the KAOS goal refinement method to vulnerability analysis
[55], and a complementary technique in i* [37] have been mentioned above.

Abuse and Misuse Cases

Abuse and misuse cases [2, 38, 50] are techniques that have been developed to
elicit security requirements by demonstrating vulnerabilities in use cases, though
less systematically than the HAZOP-based technique mentioned above. It is not
clear whether they are intended for use in eliciting and validating system security
requirements or a software security specification. It appears to us that they could
be used at either level.

Abuse frames

Abuse frames [36] are a technique, currently under development, that uses
problem frames. It identifies possible illicit behaviour as a result of two
possibilities:

• Behaviour that is permitted by the combined properties of the domains

• Behaviour that is permitted as a result of perturbation of the problem frame,
by changing either the domain properties or the frame topology.

4.4 Covert Channels

Covert channels were originally identified by Lampson [31], and are defined by
him as information channels that are not intended for information transfer at all.

 34

As Axel van Lamsweerde has pointed out7, there is the possibility of creating, and
detecting, covert channels in the course of generating requirements.

Using an example based on his suggestion, suppose there is a proposal to create
an electronic purse system with a superset of the following goals:

Enquire about purse limit (functional goal)

Put money into the purse (functional goal)

Only the purse owner should be able to know their purse limit (security
goal)

Users should know whether their actions are successful (usability goal).

This can be refined to operationalised requirements and constraints:

Enquire about purse limit, but only the purse owner is permitted to do this

Put money into the purse, with no constraint on who is permitted to do
this.

In order to meet the usability goal, the operations will return a Success or
Failure response.

Given these operationalised requirements, it is possible for an attacker to discover
a lower bound on the owner's purse limit, by successively putting money into the
purse until a Failure response is received. This is a covert channel, which is
created, by the conflicting goals of confidentiality of the purse limit and the need
to provide responses to invocations of operations 8.

Most covert channels are introduced during software design and programming,
and hardware design: they are outside the scope of requirements analysis.

4.5 A Multi-domain Approach

There is ample evidence that security has to be considered in every relevant
domain. It is not by chance that Kevin Mitnick, the arch-hacker of recent times,
whose exploitation of IP spoofing and other weaknesses in the TCP/IP protocols
has given rise to a whole new generation of technical attacks, has written a book
on Social Engineering [39]. His attacks illustrate the exploitation of
vulnerabilities arising from a combination of the properties of human
(procedural), physical and software domains.

Michael Jackson's work on Problem Frames [28] has enabled us to articulate a
multi-domain approach. Requirements are about what happens in the world, while

7 Personal communication.

8 We are not aware of a solution to this particular covert channel, without some element of
compromise.

 35

software specifications only deal with interfaces. As we emphasise below,
security is about protecting real-world assets, while many security techniques are
expressed entirely in terms of the behaviour of software. So problem frames are
an essential element in our exposition of security requirements.

In one respect we differ from Jackson, not because we believe that his approach to
his chosen problem area is wrong, but because our concerns are different. He
explicitly regards the machine as the optative target of specification, and all other
domains as indicative. As showed in our discussion of the case study, we do not
take this approach. All kinds of security constraint – physical, procedural and
software-based – need to be considered, and probably used in combination.

A consequence of this is that we use Jackson's biddable domains (usually, people)
in their true dictionary meaning: "docile; obedient". We accept that they lack
"positive predictable causality … the most that can be done is to issue instructions
to be followed", but in the security world this is true of computers as much as it is
of people. Both computers and people can be programmed or "trained to follow
stipulated procedures and can be expected to do so". Both computers and people
may fail to follow the procedures and we must allow for this in our security
design. This principle is already well established in system safety engineering, see
e.g. Leveson [35] where a combination of physical, procedural and software
safety measures is used, taking into account the likelihood of failure of any of
them.

Multiple Domains and Security Principles

There are two principles (see, e.g. Zwicky and Chapman [57]) that should be
obeyed when designing for secure systems:

• Defence in Depth: it should always be assumed that a constraint is fallible, so
if one fails, another should still prevent a successful attack on an asset.

• Diversity of Defence: Defence in Depth is more likely to be successful if the
defences that are used are diverse in nature.

It is therefore desirable, whenever possible, to supplement security measures of
one kind with those of another; a combination of physical, procedural and
software security is likely to be most effective. These principles reinforce the
need to take a multi-domain approach.

4.6 Security Functions

A security framework discussion would not be complete without a mention of
security functions. Where do functions such as access control, authentication,
encryption, etc, fit in? Our answer is that they are functions (full stop). We use the
same argument as for constraints in section 4.2.4 above. If the designer includes a
function in order to satisfy a security requirement (i.e. derived from a security
goal), then we could reasonably describe it as a security function, but if that same
function is used to satisfy some other kind of goal, that is a different matter.

Pursuing the example of section 4.2.4 above, if we have a Comprehensibility
requirement that only members of HR Dept are permitted to read Personnel

 36

Information, and we decide to implement that using authentication and access
control functions, then these functions should be described as Comprehensibility
functions. On the other hand, if they are used in their more common role of
supporting security requirements, then we will call them security functions.

4.7 Security Policies

"Security Policies" is a phrase used extensively in the literature, but it has been
used with such a wide variety of meanings that we have avoided its use in this
discussion. However, some of those meanings are related to security
requirements, and so we provide a brief survey of security policies here.

We have found the following main uses of the phrase:

• An organisation's security policy document

• Individual policies, either part of a policy document or issued individually by
an organisation. They are not discussed further here, as it is impossible to
generalise about them.

• Access control policy, of which there are several kinds

• Mechanisms for establishing parameters for security functions, such as
authentication or cryptography, in secure peer-to-peer communication
sessions, as in IPsec [45].

4.7.1 Security Policy Document

An information security policy document is advised by any text on information
security management, as exemplified by BS 7799-1 (ISO/IEC 17799) and BS
7799-2 [10, 27]. It sets out the security goals for each area of information
technology. Some of these are general goals, some expressed at the requirements
level and some are quite technology-specific. A summary of a recommended
information security policy can be found in appendix A.3 of BS 7799-2. It, like
most policy documents, does not limit itself to the behaviour of software, but also
covers physical and procedural policies.

A good security policy document sets out security goals, and more concrete
requirements and design attributes where the organisation has made decisions in
order to avoid each application needing to repeat the goal refinement process.

4.7.2 Access Control Policy

Access control policies are often referred to as models. They are limited in scope
to access control, specifically to the behaviour of the Access Decision Facility of
a Reference Monitor [3, 24]. They constrain access attempts to a specific pattern.
There are several different kinds of this policy:

• Global access control policies, built into a system

• Mandatory Access Control mechanisms

• Discretionary access control policies.

 37

In the discussion below we attempt to fit them into the following categories:

• Development process requirements

• Requirements

• Mechanisms.

4.7.3 Global access control policies

These are policies that are entirely "hard coded" into a system.

Specific Constraint on Operations

From our point of view the simplest access control policy is one which states a
specific global constraint on operations. Brewer & Nash's Chinese Wall Security
Policy [9], already mentioned (section 4.2 above) states the following constraint
on traces:

The system shall not provide information about an organisation to any
person who has previously accessed information about a competitor
organisation.

This kind of policy can be directly stated as a security requirement.

Process-defined Constraint on Operations

The Clark-Wilson Integrity Model [11] also specifies a constraint upon
operations, but less directly. To apply this model, the developer identifies
Constrained Data Items (CDIs) whose integrity requires protecting and then
ensures that they are only manipulated by well- formed transactions
(Transformation Procedures, or TPs) which can be guaranteed to maintain the
integrity predicates required by the system, e.g. no net change in value when
performing a double-entry accounting transaction. Integrity Verification
Procedures (IVPs) need to be run periodically in order to audit that the data
conforms to the integrity predicates.

This is a combination of a development process requirement (identifying CDIs
and defining their integrity predicates) and design of TPs and IVPs to conform to
and verify the integrity predicates (security requirement). It appears that the
integrity predicate itself is nowhere directly represented in the system (contrast
with System Management Policies, below), so a system audit cannot verify, by
inspection of the code alone, whether the system conforms to a Clark-Wilson
policy.

Clark and Wilson also recommend the use of Separation of Duties for operating
upon CDIs. This is another example of specific constraint on operations
(discussed above).

4.7.4 Mandatory Access Control Mechanism

The access control literature makes the distinction between Mandatory and
Discretionary access control policies:

 38

• Mandatory access control (MAC) policies cannot be changed by users of the
system

• Discretionary access control (DAC) policies can be added, removed and
altered by users with appropriate authority.

A MAC policy defines mechanisms to enforce mandatory constraints on access
control. In these policies, there is a built- in mechanism to enforce control, but the
actual decisions depend upon labels, attached to subjects and objects, that can be
altered by a privileged administrator.

The Bell-Lapadula policy model [7] is a MAC policy. In contrast to those
discussed above, does not directly define any constraint on operations. Instead it
provides a mechanism for doing so. It requiring that principals and data objects
should each be associated with labels, called Clearance and Classification
respectively. The labels are partially ordered. The policy enforces the constraint
that a subject is only permitted to read a data item if their Clearance is the same
as, or dominates, the data's Classification. The Biba Integrity policy [8] provides a
similar mechanism intended to ensure data integrity; for further discussion of this,
see Sandhu's taxonomy of data integrity [47].

Should requirements engineering be concerned with mandatory access control
polices, since they are essentially mechanisms? Possibly not, but there is an
aspect which could be relevant: the ability of some of them to withstand Trojan
Horses. Downs [14] motivates their use by pointing out that the Bell-Lapadula
model enables the prevention of leakage of information by Trojan Horses. Since it
is impossible to guarantee the absence of Trojan Horses from those parts of a
system outside its Trusted Computer Base [13], they can be rendered incapable of
passing information to uncleared subjects if the model is implemented. So a
requirement to prevent Trojan Horses leaking information can be stated knowing
that there is an implementation mechanism to achieve it.

4.7.5 Discretionary Access Control Policies

Discretionary access control policies (see, e.g. [40]) are used to specify the
constraints on operations by means of access rules that can be altered by users
with appropriate authority. We include Sandhu et al's Role Based Access Control
[48] here. Discretionary access control policies clearly have characteristics in
common with security requirements, but are not identical to them:

• They express constraints in a way similar to security requirements, but are
expressed in terms of the objects known to a machine, e.g. UserIds and files,
rather than those that exist in the real world, e.g. people and information.

• They may be at a high level, suitable for the specification of requirements, but
are often at a very detailed, implementation-dependent level.

• They can be altered by operations of the system. In this respect they differ
from normal requirements, whose change typically requires passage through a
change management process and regeneration of the system.

 39

• They are dependent on the Access Decision Facility of a Reference Monitor,
and so are not suitable for the definition of security requirements that might be
implemented by encryption or some other security mechanism.

The Harrison-Ruzzo-Ullman model [19] specifies constraints within which
alterations to access rules can be made in a discretionary model.

Distributed System Management policies

Distributed System Management policies [51] were introduced to enable flexible
management of a distributed system. They contain two elements:

• Obligation policies, which trigger defined management actions on the
occurrence of pre-defined events;

• Authorisation polices, which are simply discretionary access rules.

These policies are represented as objects which can be manipulated at run-time, in
the Ponder language [12], and are therefore more flexible than static policies.

5. Open Issues

5.1 Security Requirements in the Presence of Implementation
Flaws

We have been proposing a framework for security requirements with the implicit
assumption that designers will then implement a system which satisfies those
requirements completely. This assumption is, of course, untrue. The platforms
upon which the systems will be implemented will contain a great deal of
unwanted functionality, much of which will violate the security requirements, as
documented in CERT9 alerts.

There is therefore a need for investigation of how we can configure problem
frames so that, while knowing, that the individual domains are flawed, the risk of
violation of the security requirements is minimised. This is a subject for future
research, although much work has been done on fault-tolerance, e.g. Lee [33], and
it should be possible to make progress on the requirements of security fault-
tolerant systems.

5.2 The Need for a Taxonomy of Constraints

We have given some examples of constraints as security requirements, but have
not attempted a full taxonomy of relevant constraints, although there is a need for
this. There appear to us to be several issues requiring further work:

9 http://www.cert.org/

 40

Constraint Expressions

Constraints that express security requirements will always be constraints on
operations, but what are the contents of the constraint expression? It appears to us
that it will include at least some of the following elements, and possible more:
predicates on the parameters of the operation, its originator and source; temporal
constraints; and constraints on traces of the behaviour of a system.

Grey Security Requirements

Security requirements tend to be expressed in black and white terms, but actually
total security is unobtainable, and so security requirements need to be toned down
accordingly. Henning [21] examines whether security related service level
agreements, analogous to other service level agreements, might be possible. Irvine
& Levin [23] discuss the concept of quality of security service. It is clear that the
measurement of levels may have to very approximate in many cases: more a
rough level of uncertainty than a precise figure. Different units may need to be
used, reflecting the different approaches to assurance that are to found in the
Common Criteria for security evaluation [26]; the work factor needed to break the
requirement by known means, an estimate of its vulnerability to as yet unknown
means of attack and the degree of assurance that the design and implementation is
free of flaws, may all be factors in the measurement.

Availability Requirements

On the face of it, availability requirements can be regarded as temporal
constraints on the response time of operations. System availability requirements
can be regarded as universally quantified constraints on the response time of
operations. Response time constraints are quite different from the constraints
mentioned above, but are very similar, if not identical, to the constraints that are
needed to specify performance requirements. Work is needed to see if this
approach accurately reflects the requirements of real users.

5.3 Data-driven Security Requirements

All of our discussion so far has been function-driven; we have been advocating an
approach in which an application is examined for functions which, if misused,
could cause harm to assets. However, a high proportion of an organisation's
computer-related assets are represented directly by corporate data that is held in
databases. The harm that could be caused to an organisation depends upon the
data, independently of the application that manipulates it, and therefore the
security requirements can be attached to the data itself.

The Clark-Wilson Integrity Model [11], discussed in section 4.7.3 above, does not
include a concept of a direct representation of integrity predicates. However,
database integrity predicates, familiar from database textbooks such as Garcia-
Molina [16], do directly represent and store integrity predicates for data items,
and maintain integrity by refusing to commit any transaction that would violate
the predicate, or taking corrective action.

 41

Although it is not clear that the concept of integrity in the database world is
identical to that in the security world, if it were possible to identify the security
requirements for individual data items this would ease the task of security
requirements engineering for individual applications. This is in the same spirit as
a control principle that mandates separation of duties for critical data items, but
more systematic.

5.4 Specification Notation

This paper presents a framework, intended to encompass diverse means of
expression, and we do not intend to mandate any particular specification notation,
although we have ourselves found the problem frames approach useful. If a
formal specification notation is used for functional requirements, then security
requirements could be stated by formal predicates. On the other hand, if the
functions are defined less formally, then so will be the security requirements.
However, there are at least two general issues of specification notation, which
need further research:

• Structuring security requirements

• How to state security requirements without using too many negatives.

• Structuring Security Requirements

Although the problem frames approach has been very useful in presenting the
relationship between system and software security requirements, our presentation
has gone beyond the bounds of the standard approach. Further work is needed on
problem frames in this area, and also investigation of whether there are any other
structuring approaches, e.g. in the area of safety critical systems engineering,
which could be valuable.

• Stating Security Requirements

The reader will have noticed some awkwardness in the language used in the case
study. Phrases such as "shall not display … except to …" do not trip lightly from
the tongue. It would help if the number of negatives that are used could be
reduced.

The default assumptions of Access Control Systems (see any computer security
textbook) would adapt very conveniently to security requirements, and their
possible use should be studied. In particular, the three levels of priority of access
control statements, using the Closed World assumption, might transplant
conveniently to security constraints:

• The Closed World assumption – if no positive permission is stated, the default
is prohibition

• Positive permissions override the default

• Explicit prohibitions override positive permissions

We note that there is a risk, to be avoided, that the language is so closely
modelled on existing access control definition languages that it biases the

 42

designer towards using access control as a solution, without considering other
solutions such as encryption.

5.5 Risk analysis

Risk analysis, as represented by a method such as Octave approach [1] comes into
Baskerville's [6] category of mechanistic engineering methods. The advent of
security requirements engineering brings us one stage closer to his aim of
integrated design. However, there is no general agreement about how to integrate
conventional risk analysis into the process, and this requires further research.

Scalability

It is remarkable how much space we have taken up in the exposition of the
simplest possible case study. Do our proposals fail because they produce an
unworkable volume of material?

The size of security risk analysis documents is already notoriously huge, and we
do not believe that we are proposing a large, if any, increase. What we are doing
is making the problem more manageable by adding structure to it; it is clear
whether, at any moment, one is doing security goal refinement, or realising the
security requirements in a problem frame, or going beyond the scope of this paper
into security design.

We have not disposed of the scalability problem, but have made some
contribution to breaking it into more manageable portions.

6. Conclusions

We announced three principles at the start of this paper:

• The "what" of security requirements must be understood before the "how" is
described. We have achieved this by defining and describing security goals
and requirements, and showing their relationship to a software specification
within the problem frames architecture.

• Security cannot be considered as a feature of software alone; it is concerned
with the prevention of harm in the real world. This has been achieved by
making a clear distinction between system and software security
requirements.

• Security requirements can most usefully be defined by considering them at the
same level as functional requirements. We have proposed, and worked
through the implications of, the definition of security requirements as
constraints on system functions.

Advantages of our approach are:

• Security requirements are naturally integrated with the system's functional
requirements and constraints derived from other sources. An integrated
development is possible.

 43

• This has the consequence that interactions and trade-offs between security and
other quality requirements can be analysed. For example, interactions and
trade-offs between them can be considered in terms of the different required
constraints on the same functional requirements.

We claim that this framework will help requirements and security engineers to
understand the place of the various synthetic and analytical activities that have
previously been carried out in isolation. The framework has raised a number of
issues, mentioned in the discussion, but we believe that it provides a way forward
to effective co-operation between the two disciplines of requirements and
security.

We have no illusions that this paper does more than open up the subject of
security requirements, so as to make further progress. However, by concentrating
on defining the core security requirements artefacts, we have avoided introducing
unnecessary alligators into our swamp, and can point to a pathway out of it.

Acknowledgements

We are grateful for the support of The Leverhulme Trust and the useful comments
and feedback from Annie Anton, members of the Security Requirements Group at
the Open University and the Secure Network Group at the University of York.

References
1. Alberts, C. and A. Dorofee, Managing Information Security Risks: The

OCTAVE (SM) Approach. 2002: Addison Wesley.
2. Alexander, I., Misuse Cases in Systems Engineering. Computing and

Control Engineering Journal, 2002. 13(6): p. 289-297.
3. Anderson, J.P., Computer Security Technology Planning Study. 1972,

ESD/AFSC Hanscom, AFB Bedford, Mass.
4. Anderson, R. Security in Clinical Information Systems. in IEEE

Symposium on Security and Privacy. 1996. Oakland, CA.
5. Antón, A.I. and J.B. Earp, Strategies for Developing Policies and

Requirements for Secure E-Commerce Systems, in Recent Advances in E-
Commerce Security and Privacy, A.K. Ghosh, Editor. 2001, Kluwer
Academic Publishers. p. 29-46.

6. Baskerville, R., Information Systems Security Design Methods:
Implications for Information Systems Development. ACM Computing
Surveys, 1993. 25(4): p. 375-414.

7. Bell, D.E. and L.J. LaPadula, Secure computer system: Unified exposition
and Multics interpretation. 1976, MITRE Corporation.

8. Biba, J.K., Integrity Considerations for Secure Computer Systems. 1977,
Mitre Corporation: Bedford, Mass.

9. Brewer, D.F.C. and M.J. Nash. The Chinese Wall Security Policy. in IEEE
Symposium on Security and Privacy. 1989. Oakland, CA: IEEE Computer
Society Press.

10. BS 7799-2, Information security management - Part 2: Specification for
information security management systems, 1999.

 44

11. Clark, D.C. and D.R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. in IEEE Symposium on Security and Privacy.
1987. Oakland, CA: IEEE Computer Society Press.

12. Damianou, N., et al., The Ponder Policy Specification Language, in
Policies for Distributed Systems and Networks, M.S. Sloman, J. Lobo, and
E.C. Lupu, Editors. 2001, Springer. p. 18-38.

13. Department of Defense (USA), Department of Defense Trusted Computer
System Evaluation Criteria. 1985.

14. Downs, P.D., et al. Issues in Discretionary Access Control. in 1985
Symposium on Security and Privacy. 1985: IEEE Computer Society.

15. Firesmith, D.G., Common Concepts Underlying Safety, Security, and
Survivability Engineering. 2003, Carnegie Mellon Software Engineering
Institute.

16. Garcia-Molina, H., J.D. Ullman, and J. Widom, Database Systems:The
Complete Book. 2002: Prentice Hall.

17. Haley, C.B., et al. The Effect of Trust Assumptions on the Elaboration of
Security Requirements. in 12th IEEE Int Requirements Engineering
Conference (RE04). 2004. Kyoto, Japan.

18. Haley, C.B., R.C. Laney, and B. Nuseibeh. Deriving Security
Requirements from Crosscutting Threat Descriptions. in 3rd Int Conf on
Aspect-Oriented Software Development (AOSD'04). 2004. Lancaster, UK:
ACM Press.

19. Harrison, M.A., W.L. Ruzzo, and J.D. Ullman, Protection in operating
systems. Communications of the ACM, 1976. 19(8): p. 461-471.

20. Heitmeyer, C. Applying `Practical' Formal Methods to the Specification
and Analysis of Security Properties. in Information Assurance in
Computer Networks (MMM-ACNS 2001). 2001. St. Petersburg, Russia:
Springer-Verlag.

21. Henning, R.R. Security service level agreements: quantifiable security for
the enterprise? in New Security Paradigms Workshop. 1999. Ontario,
Canada: ACM Press.

22. IEEE Std 830-1998, IEEE Recommended Practice for Software
Requirements Specifications, 1998.

23. Irvine, C. and T. Levin. Quality of security service. in New Security
Paradigms. 2000. County Cork, Ireland.

24. ISO 10181-3, Open Systems Interconnection - Security Frameworks - Part
3: Access Control, 1991.

25. ISO/IEC 15408-1, Information technology - Security techniques --
Evaluation criteria for IT security -- Part 1: Introduction and general
model, 1999.

26. ISO/IEC 15408-3, Information technology - Security techniques --
Evaluation criteria for IT security -- Part 3: Security assurance
requirements, 1999.

27. ISO/IEC 17799, Information technology -- Code of practice for
information security management, 2000.

28. Jackson, M., Problem Frames: Analysing and Structuring Software
Development Problems. 2000: Addison Wesley.

29. Kletz, T.A., HAZOP & HAZAN: Notes on the Identification and
Assessment of Hazards. 1983, Rugby: Institution of Chemical Engineers.

 45

30. Kotonya, G. and I. Sommerville, Requirements Engineering - Processes
and Techniques. 1998: John Wiley.

31. Lampson, B.W., A Note on the Confinement Problem. Communications of
the ACM, 1973. 16(10).

32. Landwehr, C.E., et al., A Taxonomy of Computer Program Security flaws.
ACM Computing Surveys, 1994. 26(3): p. 211-254.

33. Lee, P.A. and T. Anderson, Fault Tolerance: Principles and Practice. 2nd
ed. 1990: Springer-Verlag.

34. Lee, Y., J. Lee, and Z. Lee, Integrating Software Lifecycle Process
Standards with Security Engineering. Computers & Security, 2002. 21(4):
p. 345-355.

35. Leveson, N.G., Safeware: System Safety and Computers. 1995: Addison
Wesley.

36. Lin, L., et al. Introducing Abuse Frames for Analysing Security
Requirements (poster presentation). in RE'03: 11th IEEE International
Requirements Engineering Conference. 2003. Monterey Bay, CA, USA.

37. Liu, L., E. Yu, and J. Mylopoulos. Security and Privacy Requirements
Analysis within a Social Setting. in RE'03 - 11th IEEE International
Requirements Engineering Conference. 2003. Monterey Bay, CA, USA.

38. McDermott, J. and C. Fox. Using Abuse Case Models for Security
Requirements Analysis. in Annual Computer Security Applications
Conference. 1999. Phoenix, Arizona.

39. Mitnick, K., The Art of Deception: Controlling the Human Element of
Security. 2002: John Wiley & Sons Inc.

40. Moffett, J.D., Specification of Management Policies and Discretionary
Access Control, in Network and Distributed Systems Management, M.S.
Sloman, Editor. 1994, Addison Wesley. p. 455-479, Chapter 17.

41. Moffett, J.D., et al., A Model for a Causal Logic for Requirements
Engineering. Journal of Requirements Engineering, 1996. 1(1): p. 27-46.

42. Moffett, J.D. and B.A. Nuseibeh, A Framework for Security Requirements
Engineering. 2003, Department of Computer Science, University of York.

43. Mouratidis, H., P. Giorgini, and G. Manson. Integrating Security and
Systems Engineering: Towards the Modelling of Secure Information
Systems. in 15th Conference on Advanced Information Systems
Engineering (CAiSE'03). 2003. Klagenfurt/Velden, Austria: Springer-
Verlag.

44. Nuseibeh, B.A., Weaving Together Requirements and Architectures. IEEE
Computer, 2001. 34(3): p. 115-117.

45. RFC 3586, IP Security Policy (IPSP) Requirements, IETF Network
Working Group, August 2003.

46. Rushby, J. Security Requirements Specifications: How and What? in
Symposium on Requirements Engineering for Information Security
(SREIS). 2001. Ind ianapolis.

47. Sandhu, R.S., On Five Definitions of Data Integrity, in Database Security
VII: Status and Prospects. 1994, North-Holland.

48. Sandhu, R.S., et al., Role-Based Access Control Models. IEEE Computer,
1996. 29(2): p. 38-48.

49. Schneier, B., Secrets and Lies. 2000: John Wiley and Sons.
50. Sindre, G. and A.L. Opdahl. Eliciting Security Requirements by Misuse

Cases. in 37th International Conference on Technology of Object-

 46

Oriented Languages and Systems (TOOLS-PACIFIC 2000). 2000: IEEE
Computer Society Press.

51. Sloman, M.S., Policy Driven Management for Distributed Systems.
Journal of Network and Systems Management, 1994. 2(4).

52. Spafford, E.H., The Internet Worm Program: An Analysis. 1988, Dept of
Computer Sciences, Purdue University, West Lafayette, IND 47907-2004.

53. Srivatanakul, T., J.A. Clark, and F. Polack, Writing Effective Security
Abuse Cases. 2004, Dept of Computer Science, University of York.

54. Tettero, O., et al., Information Security Embedded in the Design of
Telematics Systems. Computers & Security, 1997. 16(2): p. 145-164.

55. van Lamsweerde, A. Elaborating Security Requirements by Construction
of Intentional Anti-Models. in ICSE04. 2004.

56. Vickers, A. and J. Smith, Issues for Industrial Strength Requirements
Management, in Requirements Engineering at the University of York, A.J.
Vickers and L.S. Brooks, Editors. 1998, Dept of Computer Science,
University of York. p. 48-55.

57. Zwicky, E.D., S. Cooper, and D.B. Chapman, Building Internet Firewalls.
2000: O'Reilly UK.

