An Administration Concept for the
Enterprise Role-Based Access Control Model

Axel Kern
Beta Systems Software AG
Hermann-Heinrich-Gossen-Str. 3
50858 Koln, Germany

axel.kern@betasystems.com

ABSTRACT

Using an underlying role-based model for the administration
of roles has proved itself to be a successful approach. This
paper sets out to describe the enterprise role-based access
control model (ERBAC) in the context of SAM Jupiter, a
commercial enterprise security management software!. We
provide an overview of the role-based conceptual model un-
derlying SAM Jupiter. Having established this basis, we de-
scribe how the model is used to facilitate a role-based admin-
istration approach. In particular, we discuss our notion of
’scopes’, which describe the objects over which an adminis-
trator has authority. The second part provides a case study
based on our real-world experiences in the implementation
of role-based administrative infrastructures. Finally, a crit-
ical evaluation and comparison with current approaches to
administrative role-based access control is provided.

Categories and Subject Descriptors

K.4.6 [Operating Systems]: Security and Protection—
Access controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms

Management, Security

Keywords

Automated identity management, security provisioning, se-
curity administration, role-based access control (RBAC),
enterprise role-based access control (ERBAC), enterprise
roles, administrative role-based access control (ARBAC),
scopes, SAM Jupiter

LSAM Jupiter was developed by Systor Security Solutions
and was recently taken over by Beta Systems Software AG.

Permission to make digital or hard copies of all or part o§ tiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyaogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SACMAT'03June 2-3, 2003, Como, ltaly.

Copyright 2003 ACM 1-58113-681-1/03/000655.00.

Andreas Schaad & Jonathan Moffett
Department of Computer Science
University of York
York, YO10 5DD, UK

{andreas | jdmy@cs.york.ac.uk

1. INTRODUCTION

1.1 Background

Role-based access control (RBAC) has established itself as
a solid base for today’s security administration needs, as
documented in the RBAC96 model [14] and the subsequent
NIST standard proposal [2]. In particular, Enterprise Roles
spanning across different I'T systems are increasingly used
in medium and large organisations as a basis for company-
wide security management. An Enterprise RBAC model
(ERBAC) has been described in previous papers [5, 4] and
was implemented as a core functionality of the commercial
security management product SAM Jupiter [10].

The administration of large (E)RBAC systems is a com-
plex task which may be distributed among up to some hun-
dred administrators. To control the authority of adminis-
trators, an internal security concept for the administration
of the RBAC system itself must be provided. It has been
recognised that roles are a suitable mechanism for managing
roles, an approach commonly referred to as administrative
role-based access control (ARBAC) [12]. Practical exam-
ples of how ARBAC may be used to delegate administrative
authority have been presented for a database management
system [11] and for a legacy access control system [6].
However, to our knowledge there is no other work describ-
ing the practical aspects of administrative role-based ap-
proaches as we do in the following, particularly with respect
to supporting enterprise roles. We believe that this is nec-
essary to:

e assess the validity of current research in this rapidly
developing area;

e reconcile the requirements of the actual users of prod-
ucts implementing ARBAC with research;

e provide researchers with feedback in the form of prob-
lems encountered by practitioners which should then
be addressed more thoroughly.

1.2 Outline

Having given an initial introduction and motivation for our
work, the rest of this paper is structured as follows. We
briefly describe the enterprise role-based conceptual model
of SAM Jupiter in section 2.1. This is followed by a more
detailed discussion of how to facilitate a role-based admin-
istration approach in section 2.2.1. Our notion of adminis-
trative scopes and how these relate to the structure of an

Group Update DB2 Table
(RACF) (RACF)
Read
U User Enterprise Permission Role Dataset
ser Assignment Role Assignment (Oracle) (RACF)
Group
(UNIX)

Figure 1: Enterprise Role example

organisation are part of section 2.2.2. We then validate our
work by presenting a case study on the implementation of
our administration concept in the context of a bank in sec-
tion 3. The case study is supplemented with further practi-
cal experiences and the discussion of some implementation
aspects. After having described related work in section 4,
we discuss our work in the context of these approaches in
section 5.

2. AN ADMINISTRATION CONCEPT FOR
ENTERPRISE ROLES

2.1 The Enterprise Role-Based Access Con-

trol Model (ERBAC)

In [5] and [4] we introduced the Enterprise-Role Based Ac-
cess Control Model (ERBAC) which has been implemented
in the commercial security provisioning and identity man-
agement tool SAM Jupiter [10]. Enterprise Roles allow the
administration of users and their access rights across all sys-
tems in the IT environment of an organisation. Enterprise
Roles span over more than one target system and consist
of permissions in multiple systems. These permissions are
specific to the target system and can be of various natures.
The example in figure 1 shows a role containing a group
in UNIX, a role in Oracle and a group in RACF with au-
thorisations for updating a dataset and reading a database
table.

Figure 2 shows the resulting Enterprise Role-Based Access
Control model (ERBAC)?. Enterprise Roles include all per-
missions needed to perform a specific role. Users are then
assigned to these roles. The permissions a user receives
through the assignment of a role are propagated to the ad-
ministered target systems (TS). The Enterprise User defi-
nition leads to the creation of user accounts (user IDs) in
the TS. A permission can be any operation for an object
in one of the underlying target systems. The assignment
of a permission to an Enterprise Role does not necessarily
cause any update in the target system. The permissions

2For a more comprehensive description of ERBAC and its
comparison to the proposed NIST RBAC standard see [4].

defined for the role are propagated, and the user’s accounts
receive the associated permissions in the respective TS only
when a role is assigned to the user. The process is the same,
of course, when permissions are added to or removed from
roles.

In addition to the core RBAC features, a general role hierar-
chy is supported. Enterprise Roles can be assigned to other
roles in a directed acyclic graph (DAG). Child roles inherit
all permissions from their parent roles (including all permis-
sions that these roles inherit). A user assigned to a child role
thus receives all permissions assigned to this role, plus all
permissions which the role inherits from its ancestors. Sep-
aration of Duty is implemented in ERBAC by rules defining
constraints between roles. These rules are evaluated when
assigning users to roles and connecting roles to other roles,
thus preventing a user from receiving illegal combinations
of roles, even in the presence of a role hierarchy.

2.2 Administrative Enterprise Role-Based Ac-
cess Control (A-ERBAC)

2.2.1 The A-ERBAC Model

ERBAC as described in the previous section is a proven ba-
sis for the administration of users and their access rights
in medium and large enterprises. The IT infrastructures of
such enterprises can consist of some ten thousand to hun-
dred thousand users. To cope with these amounts, com-
panies need a considerable number of administrators®. A
wide range of business and system knowledge is needed to
perform these administrative tasks. These are, therefore,
delegated to different groups of administrators.

To allow for this delegation of administrative authority, the
ERBAC system itself must implement an administrative se-
curity concept. Naturally, this administrative security sys-
tem is implemented as a target system itself. It uses the
same entities as already defined in ERBAC. Administrators
are defined as accounts in this target system and receive ac-
cess rights via roles containing administrative permissions.

3Though it is possible to automate a high percentage of the
administration tasks (see for example [4]), a considerable
amount of manual work still remains.

Static Separation of Duty Role Hierarchy

AN

Permission
User Permission .
User Assignment Role Assignment || Operation > Object Enterprise Level

T : : T

: : : ! Propagation
T : : i~ " Permission in" TS~ ™7
1 1 * ‘ |m=—-=-=--2 - -----~n 1
: A.(:Cglfjgt i TS :_J TS Target Systems
! mn ! ::Operation: ' Object y
[J o S il

Figure 2: Enterprise RBAC Model (ERBAC)

Static Separation of Duty Role Hierarchy

A

User Permission .
User Assignment Role Assignment Enterprise Level
I
l |
I
! Admin. Permission
AdrAnmlstrator Admin. R Admin. édmlptlstratlve
ccount Operation Object ecunty
Scopes ‘

Figure 3: Administrative ERBAC Model (A-ERBAC)

The resulting Administrative ERBAC model (A-ERBAC)
is shown in figure 3. In contrast to “normal” target sys-
tems, the administrative security system is part of the ER-
BAC system itself, and assignments need not be propagated
to some external target system. If required, Separation of
Duty may be enforced by rules as described in section 2.1.

ERBAC Object Scope

User Enterprise-wide
User-Role Assignment

Role Enterprise-wide

Role-Role Assignment
Role-Permission Assignment
Account

Permission

target system
specific

Table 1: Administrative ERBAC objects

The permissions for the administrative security system con-
sist of operations allowed for the different objects in the
ERBAC system. The ERBAC objects are listed in table
1. Users and roles are enterprise-wide entities, whereas ac-
counts and permissions are specific to the target systems.
The latter are distinguished for each TS because adminis-
trators are often responsible for one or more specific target

systems. Relations are considered as separate objects to al-
low for a more fine-grained authorisation: An administrator
who is responsible for building roles may not be allowed to
assign users to them.

Administrator accounts and administrative permissions are
normal ERBAC objects. Therefore, they can be adminis-
tered like all other objects by A-ERBAC.

Operation | Abbr. | Scope

View v Object, Attribute
Insert I Object

Change ¢ Object, Attribute
Delete D Object

Table 2: Administrative operations

Table 2 lists the operations which can be specified in admin-
istrative permissions. All operations are valid on the object
level. In addition, the View and Change operations can be
restricted on the attribute level to prevent administrators
from viewing or updating sensitive attributes. This is espe-
cially valuable for user and account objects. For example,
we can allow administration of a RACF account but forbid
change of the SPECIAL attribute providing super admin-
istrator rights in RACF. Furthermore, user attributes are

often used to automate assignments of roles to users, so
controlling access to them is very important (see e.g. [4]
and [1]).

We think that it is important to distinguish between these
different operations because in real-life scenarios adminis-
trators are normally only allowed to perform specific oper-
ations. Some examples include:

e Users are inserted and deleted via an automatic con-
nection to the human resources system. Therefore,
human administrators may only be allowed to view
and change users and assign roles, but not to insert or
delete them.

e A typical local administrator is only allowed to assign
roles to users in his department. He may view roles to
see which permissions they include, but is not allowed
to insert, change or delete them.

e We should not only control update access rights, but
also restrict View access rights. This is important for
two reasons:

— Security: principle of least privilege,

— Usability: administration is facilitated if admin-
istrators are only able to see the objects they deal
with, thus reducing the amount of data they must
work with.

2.2.2 Scopes

Objects and operations defined so far in tables 1 and 2
specify only access rights for types of objects. In addition,
we must specify the objects themselves, for example which
users or roles an administrator may access. When using
“classic” schemes, we have the following possibilities:

e We can use an ACL-type scheme and define all users,
roles etc. that we want to authorise as administrative
objects. Of course, this is not realistic because of the
large number of users, roles and permissions.

o We can enhance this scheme by defining profiles as for
example in RACF for the objects using naming con-
ventions. This would make administration feasible,
but it is a static structure and will cause large ad-
ministrative efforts if major changes occur in the IT
environment.

To mitigate these restrictions, we propose a more flexible
approach: the definition of scopes. A scope is an entity
which collects objects according to one or more characteris-
tics which may include the organisational structure, a cost
center structure or even a combination of several structures.
These scopes can then be used to restrict the administrative
permissions. Objects are connected to scopes. The scopes
themselves are connected in a directed acyclic graph. Fig-
ure 4 shows a small example graph built on a cost center
hierarchy.

Thus, an administrative permission is defined as a combina-
tion of operations, objects and scopes (see figure 3). First,
we define which operations may be executed for which ob-
jects. We then add a number of scopes for which all these
operations are allowed. For each of these scopes the follow-
ing options may apply:

Cost Center
52

Cost Center Cost Center
521 523

Cost Center Cost Center Cost Center
5211 5212 5235

Figure 4: Scope hierarchy

e Node: only the scope node itself is authorised.

e Tree: only the scopes in the sub-tree below the defined
node are authorised.

e Exclude: the specified scope (either node or tree or
both) is explicitly excluded. This feature allows the
simple exclusion of nodes further down in the scope
structure. For example, central administrators might
be allowed to administer everything except objects in
the HR department. They are then authorised for
the top scope node, while the HR scope is excluded.
Without explicit exclusion, a lot of scopes would have
to be assigned.

V|I|C|D]| Object

X X User

x | x | x | x | User-Role Assignment

X Role

X Role-Role Assignment

X Role-Permission Assignment

Node | Tree | Exclude | Scope
X X Cost Center 521
X X Cost Center 5212
X Cost, Center 523

Table 3: Example of an administrative permission

Table 3 shows an example permission. It authorises an ad-
ministrator to view and change users, assign and deassign
roles, and view roles and their assignments for the cost cen-
ters 521, 5211 and 523 from the scope hierarchy in figure
4.

As administrators can receive several administrative autho-
risations dealing with the same objects, we have to discuss
how to handle contradictions. Different operations on the
same object are simply accumulated. Conflicts cannot oc-
cur as we do not allow negative authorisations. For scopes

we find a different situation: Scopes build a directed acyclic
graph which can lead to multiple inheritance. Taking the
three modes “Node”, “Tree” and “Exclude” into consider-
ation, we find four cases: direct and indirect specification
of a scope node and direct and indirect exclusion which can
lead to conflicts. In general, direct grant or exclusion of a
scope node always has priority over inherited definitions. In
addition, the direct specification of a node prevails over a
direct exclusion.

At first glance, scope and role hierarchies seem quite sim-
ilar. One could also think about using the role hierarchy
as a basis for authorising the administrators (as in [12]).
There are, however, several reasons which make this ap-
proach problematic in real-life scenarios:

e The direction of inheritance may be different for roles
and scopes (see also [8]). When building a role tree
based on an organisational hierarchy, departments po-
sitioned higher up in the hierarchy are normally as-
signed more general roles. Figure 5 shows an example
for an organisational structure. Permissions for all em-
ployees (such as use of the mail system) would be as-
signed to the “Bank” role, region-specific access rights
to the “Region” roles and so on. The roles which are
lower in the organisational tree inherit the permissions
of all roles in the tree above.

On the other hand, if we take figure 5 as a scope graph,
the situation is different. If we implement an admin-
istration concept on region level, an administrator as-
signed to a specific region is allowed to administer it
with all included branches but does not necessarily
have any rights on bank level. This means that the
inheritance direction is reversed.

e The criteria for defining role and scope hierarchies are
often different. Scopes are mostly defined based on
the organisational structure, whereas roles are often
defined by job function. Example: A company defines
roles based on job functions such as cashier. An ad-
ministrator, however, is responsible for a department
or division, not for all cashiers in the bank.

e The administration concepts for various ERBAC ob-
jects may differ. For example, users might be ad-
ministered using a decentralised delegation structure
based on the organisational hierarchy, roles are ad-
ministered centrally, and objects and permissions are
administered by platform or target system. Therefore,
it is important that we are able to implement different
administrative permission concepts for these entities.
Coupling administrative rights for users and permis-
sions to their assignments to roles is not practical, as
has already been shown in [9].

3. PRACTICAL EXPERIENCES WITH AD-
MINISTRATIVE ERBAC

To validate the model in practice, we shall compare it to the
administration concepts of some enterprises. The following
examples are based on experiences we have made during the
implementation of SAM at large customer sites.

Bank
Region Region
Northern Southern
Germany Germany
Branch Branch Branch
Hamburg Bremen Stuttgart

Figure 5: Scope tree based on organisational hier-
archy

3.1 A Case Study

A European bank administers about 70 000 users with SAM.
Users are created and deleted automatically via a connec-
tion to the human resources system (compare also with [15]).
The main business roles are also assigned and revoked au-
tomatically. The major tasks left to manual administration
are the creation and maintenance of roles, the assignment
and revocation of additional roles, and password reset.
Administrative roles are created for the main administra-
tor types as described in the following. For each type, we
show the administrative permissions in ERBAC assigned to
these roles. The delegation concept is based on the various
branches of the bank. Therefore, we create a scope hierarchy
using these branches. The top node includes all branches
of the bank. Figure 5 shows a simplified view of the scope
hierarchy.

o (Central administrators are allowed to administer all
ERBAC objects in the system. They are especially
responsible for creating and maintaining the roles, but
may also carry out all other administrative tasks (see

table 4).
V|I|C|D]| Object
x| x| x| x| User
x | x | x | x | User-Role Assignment
x | x| x| x| Role
x | x | x | x | Role-Role Assignment
x | x | x | x | Role-Permission Assignment
Node | Tree | Exclude | Scope
X X Bank

Table 4: Administrative permission for a central ad-
ministrator

e Local administrators may assign and revoke roles for
users, view all access rights of users, and reset their

passwords. These administrative rights are restricted
to one branch or a range of branches. As an example,
the permission in table 5 contains a branch from the
scope tree in figure 5. The Change right for users is
restricted to certain fields, e.g. the password.

I|C|D| Object
X User

')
x
x | x | x | x | User-Role Assignment
X
x

Role
Role-Role Assignment
Role-Permission Assignment
Node | Tree | Exclude | Scope

be Branch Hamburg

Table 5: Administrative permission for a local ad-
ministrator

e Help desk administrators may reset passwords for users
in one or several branches. The Change right is re-
stricted to the password field for users. The example
in table 6 shows the permission for a help desk admin-
istrator responsible for a region.

V|I|C]|D]| Object

b X User
User-Role Assignment
Role
Role-Role Assignment
Role-Permission Assignment

Node | Tree | Exclude | Scope

X X Region Northern Germany

Table 6: Administrative permission for a help desk
administrator

e Auditors are allowed to view all ERBAC objects but
must not update any object (see table 7).

V|I|C|D]| Object
X User
X User-Role Assignment
X Role
X Role-Role Assignment
X Role-Permission Assignment
Node | Tree | Exclude | Scope
X X Bank

Table 7: Administrative permission for an auditor

3.2 Further Experiences

According to our experiences, it is quite typical that admin-
istrative authority is delegated according to some aspect of
the organisational structure, as we have described in the
previous case study. This is also true for I'T centers pro-
viding services for several companies and requiring different
administrative scopes for every company.

However, the scope structures for user and permission ad-
ministration often differ. User administration might be del-
egated according to a departmental structure, whereas per-
mission administration is partitioned according to systems
and applications. A good real-world example for this is
given in the context of the following organisation, which
strictly separates between resource, role and user adminis-
tration (see figure 6):

1. Resources are logically grouped in so-called business
assets. Asset managers build functional roles to which
they assign permissions for their resources. They de-
cide which organisational units may use each role.

A scope is defined for every business asset which con-
tains the corresponding resources and functional roles
(see business assets A and B in figure 6). Asset man-
agers are authorised to manage functional roles and
assign resources for one or more scopes. In addition,
they assign their functional roles to the scopes defin-
ing organisational units where they may be assigned.
In figure 6, for example, roles A1l and B1 are assigned
to department 1, roles A2, B1 and B2 to department
2.

2. Role administrators are responsible for an organisa-
tional unit. They build business roles by connecting
them to functional roles. The result is a two-level role
hierarchy where the business roles inherit the permis-
sions from the connected functional roles.

A scope is defined for every organisational unit con-
taining the corresponding business roles and users.
Role administrators are allowed to manage business
roles and assign functional roles for one or more scopes.
They are only allowed to view those functional roles
which are assigned to the scopes they are authorised
for.

3. User administrators are also responsible for an organ-
isational unit. Their job is to assign business roles to
users in their unit.

In the previous example, separate scope structures are de-
fined for business assets and organisational units.
Other approaches we have found at customer sites include:

e In many companies the administration of different tar-
get systems is performed by different departments.
When such a company starts to implement an ER-
BAC tool, it often does not want to change this or-
ganisation, e.g. for political reasons. Thus, adminis-
trators remain responsible for their target system(s).
As administration concepts differ between the target
systems, this might even lead to separate scope trees
for them.

e One other bank makes a clear separation between sys-
tem security and application security. System secu-
rity consists mainly of the administration of operating
system access control (Windows NT, RACF etc.) and
is performed by a small number of central adminis-
trators without much differentiation of access rights.
Application security controls access to the bank ap-
plications and allows fine-grained access control. The

————————————————————————

: Resource Resource || Resource Resource Resource |,

! Al A2 " B1 B2 B3 !

| R 0 R . Asset

| w w :: w W ! Manager

| Functional Functional h Functional Functional |

: Role Al Role A2 - Role B1 Role B2 :

\| (Dep. 1) (Dep. 2) |} | (Dep. 1+2) (Dep. 2) |

| - |

R P — N e A R ---+ Role

CTT1T T e S i [-~~~ Administrators
| L |

: Business Business - Business Business :

! Role 11 Role 12 iy Role 21 Role 22 !

| i | User

: - . Administrators
| User 11 User 12 :: User 21 User 22 User 23 |

Figure 6: Example with Functional and Business Roles

administration is delegated to the departments, so ad-
ministrative permissions using an organisational scope
hierarchy are defined for the application security tar-
get systems.

These examples show that we need a flexible scope structure
as defined in section 2.2.2. It is not sufficient to use only the
organisational hierarchy alone as a basis for the delegation
of administrative authority.

3.3 Implementation Aspects

Besides providing a sound conceptual basis for the admin-
istrative security concept, we were forced to consider addi-
tional aspects during the implementation of A-ERBAC in
SAM Jupiter. These include:

e Every company has administrators who are allowed to
do everything in the ERBAC system. For such indi-
viduals we have implemented a super administrator
flag in the administrative account. Analogously, a su-
per auditor flag allows view rights for every object.

e Several companies have special requirements which do
not fit into the general A-ERBAC model. To sup-
port such requirements without increasing the com-
plexity of the model, we provide exits in the software
which enable the customers to implement these exten-
sions. Examples of such additional requirements might
be customer-specific security policies which depend on
field contents like allowing only specific administrators
to update a field to specific values.

e ERBAC systems must provide good performance. Au-
thorisation checks should not cause long waiting times
for the administrators. This is especially critical for
View authorisations. These must be checked “on the
fly” when presenting lists of users, roles etc. in the
user interface of the administration tool. However, a
system where the data structures are optimised for
performance and therefore contain a lot of redundant
data, is normally difficult to administer. The solu-
tion is to separate the administration and access layer,
which is a common practice for application security
systems. The administration layer corresponds to A-
ERBAC as described above and allows for easy ad-
ministration. The data of the administrative security
system is then denormalised and stored in the access
layer in a format which can be checked with minimum
delay.

4. RELATED WORK
4.1 The ARBAC97 Model

The administrative role-based access control model (AR-
BAC97) [12] expresses the idea of using RBAC to manage
RBAC through decentralisation of administrative author-
ity, including distinction between regular and administrative
roles and permissions. We do not enforce this distinction on
a technical level in A-ERBAC, but agree that it is normally
made on an organisational level. ARBAC97 consists of three

sub-models. These describe decentralised administration
through user-role assignment (URA97), permission-role as-
signment (PRA97) and role-role assignment (RRA97). Two
central concepts of ARBAC97 are the administrative range
and prerequisite conditions which regulate and impose re-
strictions on the administration of system objects. The ad-
ministrative range reflects the set of roles over which an
administrator has authority. Depending on the context, he
can assign and remove users to or from a role, alter role hi-
erarchies, and assign or revoke permissions. The authority
to control user-role assignments is expressed in a relation
can_assign C AR x CR x 2F. For example, the expres-
sion can_assign (arg, rry,{rra, rry, rrc}), would state that
a member of the administrative role ar, can assign a user
who currently is a member of regular role rry to the regular
roles rrq, vy or rr.. With respect to such user-role assign-
ments, a prerequisite condition could state that any user to
be assigned to a role r1 must already be assigned to another
role ra.

4.2 The ARBAC99 Model

It has been demonstrated that there may be scenarios in
which the decentralised administration of a system may be
awkward when following the ARBAC97 approach. One ex-
ample for this is the case of an external consultant assigned
to the role “Employee Project X” within a project. Member-
ship of this role might be a precondition for further assign-
ments within the project by the local administrator. The
consultant thus automatically qualifies for these possible as-
signments, and there is no way in URA97 to prohibit further
assignments for the consultant.

The ARBAC99 model [13] extends the ARBAC97 model
to address such issues, introducing a notion of mobile and
immobile memberships of users and permissions in roles.
Immobile assignment of a user to a role allows him to make
use of the rights associated with that role, however his role
membership does not qualify him for any further assign-
ments. Mobile membership on the other hand covers both
aspects, access to the permissions of the role as well as the
possibility of further role assignments. The problem of the
external consultant could thus be easily solved by providing
him with an immobile membership to the project role. Mo-
bile and immobile assignments of permissions to roles work
analogously.

4.3 The ARBACO02 Model

The ARBACO02 model was introduced in [9], addressing a
set of problems that may occur in the administration of
user-role and role-permission relationships with respect to
the ARBAC97 model. The first underlying reason for these
problems is that in ARBAC97 the user and permission pools
are dependent on the structure of the role hierarchy. Thus,
the concept of an organisational unit, independent of role
hierarchies, is introduced as the basis for defining user and
permission pools. Assigning a user or permission to a pool
is independent from assigning it to a role.

The second identified reason is the top-down approach used
in ARBAC97 for permission-role administration. Conse-
quently, a bottom-up approach is suggested in ARBACO02.
This means that common permissions are assigned to roles
lower in a role hierarchy, while higher roles inherit these and
may also be provided with other more specific permissions.

4.4 Policy-Based Systems Management

We introduced the concept of “scope”, which appears to
subsume the ARBACO02 notion of “pools”, in the context of
delegation of authority [7]. In this work, scope was defined
in terms of domains, which are named sets of principals and
resources. The concept of domain provides a flexible and
powerful mechanism for capturing many aspects of organi-
sational structure, e.g. cost centers, or departments based
on geographical or functional criteria. The security admin-
istrator’s scope of authority is constrained in two ways:

1. His “Subject Authority” limits the users to whom he
can give access rights;

2. His “Target Authority” limits the resources to which
he can give access rights.

The motivation for this work was the need to permit security
administrators to create access rights, while not possessing
such rights themselves. This is achieved by ensuring that
the security administrator is not a member of the “Subject
Authority” scope.

5. DISCUSSION

As described in the previous sections, there exist several
models for administrative role-based access control. These
show parallels to the work we have described in this paper.
The following discussion shows how ARBACO02 mitigates
the main drawback of ARBAC97/99 by using the concept
of pools. Our scopes follow this approach, but we argue that
A-ERBAC provides a more comprehensive solution.

The evolution from the initial ARBAC97 model over AR-
BAC99 to ARBACO02 addressed a number of shortcomings.
The major problem in ARBAC97 is that the administrative
rights for users and permissions are tightly coupled to their
membership in a role. ARBAC99 tries to remedy this by
introducing the notion of mobile and immobile roles. How-
ever, it still uses the role hierarchy as a sole basis for defining
administrative authority.

The solution lies in the complete separation of the admin-
istrative authority over users and permissions from their
membership in a role. This is achieved through the concept
of pools in ARBACO02, as well as by using our notion of
scopes in section 2.2.2. Scopes are also used in the Tivoli
Policy Director, but here in the context of ACLs [3].
ARBACO02 pools and A-ERBAC scopes are principally sim-
ilar in that they provide different structures for users and
permissions which are separated from the role hierarchy.
However, our notion of scopes goes further regarding the
following issues:

e A scope is deliberately defined as an abstract concept
which can, but does not have to be mapped to an
organisational structure. While the latter is often used
as the basis for the administrative structure, this is not
always the case, as our examples show.

e Scopes are also used to define administrative rights for
building roles, in contrast to using the role hierarchy.
On one hand, this simplifies the administration con-
cept, as all entities are handled in a similar manner.
On the other hand, using the role hierarchy may not be

conform with the administration concept of an organ-
isation. This is true, for example, when working with
different types of roles as described in our example
in section 3.2. Business roles inherit from functional
roles, and both types of roles are administered by dif-
ferent groups of people. This separation can be easily
expressed by connecting the roles to scopes, but not
by using the role hierarchy.

e Not only can we define different scope hierarchies for
users and permissions, but we can also do so for all
objects in the ERBAC model. This allows for the im-
plementation of fine-grained administrative concepts
as is sometimes required in practice. Furthermore,
the fact that all objects are treated similarly keeps
the administration concept simple.

e By providing several options (node, sub-tree, exclu-
sion) when building scope ranges it is possible to adapt
the scope hierarchy easily to a real-world administra-
tion structure.

e A persistent issue is how to define who is allowed to ad-
minister newly created users. The preferred approach
is to import users from a human resources database,
thereby putting them into the correct scope. How-
ever, as some organisations do not implement such an
import interface or not all users are contained in hu-
man resources (e.g. external consultants or business
partners), users are often inserted manually. This is
also well supported by our scope model. If an admin-
istrator has the permission Insert for user objects for
certain scopes, he can create new users in these scopes.

6. CONCLUSION

Enterprise Roles allow the administration of users and their
access rights across all systems in the IT environment of
an organisation. The Enterprise Role-Based Access Control
model (ERBAC) is an extension of RBAC96 based on these
Enterprise Roles. The administration of large ERBAC sys-
tems is a complex task which may be distributed among
many administrators. A common approach to managing
RBAC systems is to use roles.

In this paper we have described administrative ERBAC (A-
ERBAC), which utilises roles and scopes to allow delegation
of administrative authority in ERBAC. A-ERBAC has been
implemented in SAM Jupiter, a commercial administration
tool. Based on a case study and further experiences during
implementation of A-ERBAC in several large organisations,
we have shown that it provides a comprehensive and flexible
approach for administrative role-based access control.

7. REFERENCES

[1] M. A. Al-Kahtani and R. Sandhu. A Model for
Attribute-Based User-Role Assignment. In
Proceedings of the 18th Annual Computer Security
Applications Conference, Las Vegas, Nevada, USA,
pages 353-362, December 2002.

[2] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security (TISSEC),
4(3):224-274, August 2001.

[3] G. Karjoth. The Authorization Service of Tivoli Policy
Director. In Proceedings of the 17th Annual Computer
Security Applications Conference, New Orleans,
Louisiana, USA, pages 319-328, December 2001.

[4] A. Kern. Advanced Features for Enterprise-Wide
Role-Based Access Control. In Proceedings of the 18th
Annual Computer Security Applications Conference,
Las Vegas, Nevada, USA, pages 333-342, December
2002.

[5] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett.
Observations on the Role Life-Cycle in the Context of
Enterprise Security Management. In Proceedings of
the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT 2002), Monterey,
California, USA, pages 43-51, June 2002.

[6] A. D. Marshall. A Financial Institution’s Legacy
Mainframe Access Control System in Light of the
Proposed NIST RBAC Standard. In Proceedings of
the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, USA, pages 382-390,
December 2002.

[7] J. Moffett. Specification of Management Policies and
Discretionary Access Control. In M. Sloman, editor,
Network and Distributed Systems Management, pages
455-480. Addison-Wesley, 1994.

[8] J. Moffett. Control Principles and Role Hierarchies. In
Proceedings of the Third ACM Workshop on
Role-Based Access Control, Fairfax, Virginia, USA,
pages 63-69, October 1998.

[9] S. Oh and R. Sandhu. A Model for Role
Administration Using Organization Structure. In
Proceedings of the 7Tth ACM Symposium on Access
Control Models and Technologies (SACMAT 2002),
Monterey, California, USA, pages 155-168, June 2002.

[10] For more information about SAM Jupiter see
http: //www. sam-security.com.

[11] R. Sandhu and V. Bhamidipati. Role-Based
Administration of User-Role Assignment: The URA97
Model and its Oracle Implementation. Journal of
Network and Computer Applications, 22(3), July 1999.

[12] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 Model for Role-Based Administration of
Roles. ACM Transactions on Information and System
Security (TISSEC), 2(1):105-135, February 1999.

[13] R. Sandhu and Q. Munawer. The ARBAC99 Model
for Administration of Roles. In Proceedings of the 18th
Annual Computer Security Applications Conference,
Phoeniz, Arizona, USA, pages 229-238, December
1999.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE
Computer, 29(2):38-47, February 1996.

[15] A. Schaad, J. Moffett, and J. Jacob. The Role-Based
Access Control System of a European Bank: A Case
Study and Discussion. In Proceedings of the 6th ACM
Symposium on Access Control Models and
Technologies (SACMAT 2001), Chantilly, Virginia,
USA, pages 3-9, May 2001.

