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Abstract 

Although security requirements engineering has recently attracted increasing 
attention, it has lacked a context in which to operate. A number of papers have 
described how security requirements may be violated, but apart from a few hints 
in the general literature, none have described satisfactorily what security 
requirements are. 

This paper proposes a framework of core security requirements artefacts, which 
unifies the concepts of the two disciplines of requirements engineering and 
security engineering. From requirements engineering it takes the concept of 
functional goals, which are operationalised into functional requirements, with 
appropriate constraints. From security engineering it takes the concept of assets, 
together with threats of harm to those assets. Security goals aim to protect from 
those threats, and are operationalised into security requirements, which take the 
form of constraints on the functional requirements. 

In addition we explore the consequences of the fact that security is concerned 
with the protection of assets, while computers only provide interfaces. We show 
how to specify the relationship between security requirements and the 
specification of software behaviour, using Jackson's Problem Frames approach. 
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When you are up to your elbows in alligators, you must never forget 
that you set out to drain the swamp. [anon]  

1. Introduction 

The subject matter of this paper is the description of the core artefacts that are 
needed to carry out security requirements engineering; this is the process of 
eliciting, specifying and analysing the security requirements of a system. It is a 
development of our earlier paper [42]. 

We propose a framework which integrates the concepts of the two disciplines of 
requirements engineering and security engineering.  From requirements 
engineering it takes the concept of functional goals, which are operationalised 
into functional requirements, with appropriate constraints. From security 
engineering it takes the concept of assets, together with threats of harm to those 
assets. Security goals aim to protect assets from those threats, and are 
operationalised into security requirements, which initially take the form of (a 
subset of) the constraints on the functional requirements. 

This paper has a view of security requirements, based on the following principles: 

• The "what" of security requirements – its core artefacts – must be understood 
before the "how" of construction and analysis.  

• Security cannot be considered as a feature of software alone; it is concerned 
with the prevention of harm in the real world. We must therefore consider 
both the security requirements of real-world systems and the specification of 
software that demonstrably meets those requirements. 

• Since security is largely concerned with prevention of misuse of system 
functions, security requirements can most usefully be defined by considering 
them at the same level as functional requirements, and as constraints upon 
them.  

Scope of the Framework 

This framework has been developed in order to understand the place of security 
requirements within the development of an individual application, and our 
proposals are limited by that scope. The application will, of course, be developed 
in the context of a software operating environment, a hardware environment, and 
a human cultural environment. All of these environments will have properties 
which impact upon the application. However, we have not covered these in this 
paper. In particular, we believe that there are many issues with regard to the 
properties of the software operating environment, which need to be tackled in 
later work. 

1.2 Background 

Although security requirements engineering has recently attracted increasing 
attention, it has lacked a context in which to operate. This lack was pointed out by 
Baskerville [6], where he presents three generations of security design methods:  
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• Checklists: these are lists of points to be checked, on the assumption that 
experience of previous applications can be applied to the current one. 

• Mechanistic engineering methods: a process is used, which focuses on 
security in isolation from other aspects of system design. 

• Integrated design: A development process includes security as a facet of the 
whole development. 

Unfortunately he was unable to point to any examples of integrated design 
methods that were used in practice. His comments apply to design, but it is also 
true today that there is no satisfactory integration of security requirements 
engineering into requirements engineering as a whole. In this section we review 
existing literature, in order to show the truth of this statement, and then motivate 
the remainder of the paper by showing why it matters. 

1.2.1 Previous Definitions of Security Requirements 

Extensive work has been carried out on security requirement during the last few 
years. However, there has been a lack of a satisfactory definition of them.  Work 
on the subject has tended to be carried out independently by the security and 
requirements communities. 

The Security Community 

From the security community side, there are several papers on security 
requirements. Tettero [54] defines security requirements as the confidentiality, 
integrity and availability of the entity for which protection is needed. While we 
accept that this is a clear definition, we will argue below (section 4.2) that it is too 
abstract. Lee et al [34] point out the importance of considering security 
requirements in the development life cycle, but do not define them.  

ISO/IEC 15408 [25] does not define them in its glossary. However, in one place 
they are depicted as being at a higher level than functional requirements, but 
elsewhere the reference to "security requirements, such as authorisation 
credentials and the IT implementation itself" appears to us as being at too low a 
level! However, although we do not find the definition of security requirements 
very consistent, the inclusion of assurance requirements (the "degree of 
confidence" required in the security mechanisms of a system) is important although 
we have not attempted to address it in this paper. 

The Requirements Community 

There have also been several relevant papers on the requirements community 
side. Heitmeyer [20] shows how the SCR method can be used to specify and 
analyse security properties, without giving the criteria for distinguishing them 
from other system properties.  

A number of papers have focussed on security requirements by describing how 
they may be violated. For example, McDermott & Fox [38], followed 
independently by Sindre & Opdahl [50] and elaborated by Alexander [2], describe 
abuse and misuse cases, extending the use case paradigm to undesired behaviour. 
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Liu, Yu & Mylopoulos [37] describe a method of analysing possible illicit use of 
a system, but omit the important initial step of identifying the security 
requirements of the system before attempting to identify their violations.  

van Lamsweerde and colleagues have written several papers on the subject. In the 
latest [55] he uses the concept of security goals, but does not define what he 
means by security requirement or give an example of one. Antón & Earp [5] use 
the GBRAM method to operationalise security goals for the generation of security 
policies and requirements, but also do not define security requirements. 

Firesmith [15] defines security requirement as "any requirement that specifies a 
minimum, mandatory amount of security", which does not take us much further 
forward. 

None of the above define what security requirements are. On the other hand, 
when discussing non-functional requirements, of which he regards security as 
one, Kotonya [30] defines them as "restrictions or constraints" on system services 
and similar definitions can be found in other text books. Rushby [46] appears to 
take a similar view, stating "security requirements mostly concern what must not 
happen". Using the Tropos methodology, Mouratidis et al [43] state that "security 
constraints define the system’s security requirements". Our own view, elaborated 
in the remainder of this paper, is consistent with these definitions: that security 
requirements are most usefully defined as requirements for constraints on system 
functions.  

1.2.2 The Importance of Security Requirements 

We distinguish between the goals of stakeholders and the requirements of the 
system, as agreed by the customer1. Individual stakeholders may have different 
and conflicting goals, which need to be elicited by the requirements engineer. On 
the other hand the system's requirements must be free of conflicts, because the 
resolution of conflicts between goals is the job of the requirements engineer, not 
the implementer.  

It is important to know what security requirements are, because the issue of their 
definition in actual applications is not trivial. Consider the description of a clinical 
information system in [4]. The report presents a view of the security goals of a 
Clinical Information System from the point of view of the doctors. It makes 
explicit assumptions that the doctors should have control of the system, while the 
administrators should be subordinate. It is well known that, in many health 
services, there is a power struggle between doctors and administrators. In a 
hypothetical system in which that power struggle has not been resolved, we can 
consider two hypothetical sets of candidate security requirements. In set 1, 
proposed by the doctors, some actions are considered legitimate for doctors, but 
prohibited for administrators. In set 2, proposed by the administrators, the 
situation is reversed; some actions that would have been legitimate by the 
standards of report 1 are security violations, and vice versa. It cannot be left to the 

                                                 

1 As defined in [22] IEEE Recommended Practice for Software Requirements Specifications. 



 6 

implementers to resolve conflicts between points of view; a requirements 
document must state unambiguously what is to be allowed or prohibited to whom; 
i.e. what are the constraints that are to be imposed on the use of functions of the 
system. Only then can we analyse the requirements for misuses or abuses. 

1.3 Outline of Paper 

The remainder of this paper is organised as follows. Section 2 introduces the 
artefacts and places them in a framework: 2.1 discusses artefacts generally, and 
distinguishes between core and support artefacts; 2.2 illustrates the core security 
artefacts and their dependencies by means of a diagram (figure 1); 2.3 discusses 
the process implications of the dependencies; and 2.4 briefly introduces problem 
frames, the notation with which we illustrate the relationship between system 
requirements and software specifications.  

Section 3 is a case study, which uses the framework concepts and shows how they 
are applied. It is in four parts: 3.1 introduces the application; 3.2 shows how its 
system security requirements are derived from security goals; 3.3 shows 
alternative designs by which the problem frame, consisting of a software 
specification interacting with its surrounding domains, satisfies the security 
requirements; and 3.4 reviews the case study. 

Section 4 expands on our introduction by discussing the main artefacts in the light 
of the case study: in sections 4.1 – 4.3 security goals, security requirements and 
their analysis are discussed; sections 4.4 – 4.7 cover covert channels, the need for 
a multi-domain approach, security functions and security policies.  

This paper has inevitably left open many issues, and section 5 considers some of 
them: security in insecure systems; the need for a taxonomy of constraints; data-
driven security requirements; specification notations; and the place of risk 
analysis in this framework. Section 6 concludes the paper. 

2. The Framework 

2.1 Artefacts 

Requirements engineering rightly concentrates on deciding what is to be done, 
before deciding how to do it. This paper follows the spirit of requirements 
engineering by concentrating on the "what" before the "how". In this paper we use 
the term artefact to describe the "whats", or objects, of security requirements 
engineering.  

By artefact we mean any object that is created as part of the process of system 
development. Typically artefacts are documents, electronic or otherwise, but they 
could include physical models, test rigs, and other things. We make the distinction 
between core artefacts and support artefacts. 

We assume that the system development process has recognisable stages, each of 
which produces artefacts that are successively closer representations of a working 
system. These are core artefacts. They are ordered in a hierarchy that describe 
the system, progressing from the most abstract to the final concrete working 
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system. This hierarchy is a hierarchy of abstraction, and does not imply the 
waterfall model of linear progress; progress may be made concurrently or 
iteratively, rather than in a linear fashion. Indeed, we have pointed out in an 
earlier paper [44] that requirements and architecture cannot be separated: the 
"Twin Peaks" concept. 

At early stages core artefacts are typically documents or prototypes. The final 
core artefact is the working system itself, consisting of a combination of physical 
and software items.  

Core artefact documents contain statements of two kinds, following Jackson's 
notation [28]: 

• Statements that describe the assumed or given structure or behaviour of some 
aspect of the system or its environment. These are indicative statements 
characterised by the use of "is/are" for factual descriptions. 

• Statements that describe the required structure or behaviour of some aspect of 
the system. These are optative statements, characterised by the use of "shall". 

To give an example,  the optative statement that a door shall be secure from 
intruders can be achieved in one of two ways 2: 

• A high security lock shall be installed on the door, or 

• The existing door lock is secure. 

The latter statement is a trust assumption [17], which is used to place a bound 
upon the extent of analysis that is considered necessary (see also section 2.4 
below).  

The core artefacts in which we have most interest in this paper are, on the 
mainstream requirements engineering side: goals, requirements, and the 
components and structure of the system architecture; and on the security 
engineering side: assets, threats and control principles. 

Support artefacts are artefacts that help to develop, analyse or justify the design 
of a core artefact. They may represent formal analysis, informal argument, 
calculation, example or counter-example, etc. They are the by-products of 
processes whose aim is to help produce verified and valid core artefacts: either 
constructive processes which help create them, or analytical processes which test 
them, both internally (verified) and in relation to their senior artefacts in the 
hierarchy (valid). 

We concentrate on core artefacts, because it is their production which drives the 
need for development and analysis processes from which support artefacts 
emerge. Nothing in this paper should be construed as doubting the importance of 
support activities and artefacts, but they are only important to the extent that they 
ensure the quality of the core. 

                                                 

2 Plus indicative or optative statements about the door material, hinges, behaviour of people, etc. 
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Dependencies between Artefacts 

In a hierarchy of artefacts, there are dependencies between artefacts. For example, 
an operationalised requirement is dependent upon a goal from which it has been 
derived, because alteration of the goal is likely to cause alteration of the 
requirement. We will call this kind of dependency hierarchical dependency. 

There is also a reverse kind of dependency: feasibility. If it proves impossible to 
implement a system that satisfies all the optative properties of a requirements 
specification, then this will force a change in the goals or requirements; the 
higher- level artefact is dependent on the feasibility of the artefacts below it in the 
hierarchy. 

Although the processes are not the main concern of this paper, the dependency 
relationships have an important implication for the structure of development 
processes: 

• If an artefact is dependent upon the implementation of another artefact for its 
feasibility, then if the implementation is not feasible, there must be an 
iteration path in the process, back to the ancestor from its descendant. 
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2.2 The Core Artefacts Diagram 

Our view of the core artefacts and their relationships is shown in Figure 1. It is a 
class diagram, with dependency associations. Some classes inherit from the 
abstract classes Goal, Requirement and Constraint, and these inheritance relations 
are shown in grey. The dependency associations are shown as black dashed lines, 
and are interesting because the dependencies drive the security requirements 
process. 
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2.2.1 Application Artefact Types 

Three columns of application artefact are shown and, in addition, global 
management control principles: 

• The first column shows the application functionality artefacts that would be 
needed even if security were not under consideration;  

• The second column shows the additional application quality artefacts that are 
needed in order to provide qualities such as usability to the system;  

• The third column shows the additional application security artefacts that are 
needed in order to provide security to the system;  

• Management control principles apply globally throughout an organisation and 
provide constraints that would otherwise have to be derived repeatedly for 
each security risk analysis. Examples that are directly relevant to security are 
the principles of Least Privilege (no one shall have more privilege than 
needed for the performance of their duties) and of Separation of Duties (for 
important transactions, no single person shall be able to perform all parts of 
the transaction). 

Application Functionality  

This column represents the artefacts that are needed in a conventional life-cycle 
model in order to produce a working system. Beyond the structure imposed by 
Goals, Requirements and Architecture, we do not intend to place any constraint 
on the development process or method that is used. 

Application Quality  

This column represents the artefacts that are needed in order to provide qualities 
such as usability and performance to the system3. They are included in the 
consideration of security requirements, as it is typically not feasible to implement 
all the desired qualities of a system, and it may be necessary to trade off security 
against other qualities.  

Application Security  

This column represents the artefacts that are needed in order to introduce security 
into the system. They are briefly introduced here. More detail of the concepts can 
be found in risk management books such as Alberts & Dorofee [1]. 

• The relevant assets of a system are those assets of the organisation that could 
result in harm if the system were misused. They have a dependency upon the 
application business goals because the goals will determine which portion of 
the organisation's assets may be affected by the system. 

• The type of harm that can happen depends upon the asset type, e.g.  

                                                 

3 Security is generally considered to be a "quality", but it is considered separately because it is the 
focus of this paper. 
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Money: loss 

Information: exposure, corruption, loss, etc 

• The security goals of the system owner are derived from a combination of 
three different sources: 

The possible harm to assets; 

Management control principles; 

Application business goals, which will determine the applicability of 
management control principles, e.g. by defining those privileges that are 
needed for the application prior to excluding those that are not. 

Note that other legitimate stakeholders may have other security goals that 
conflict with these (see section 1.2.2 above); the set of relevant security goals 
may be mutually inconsistent, and inconsistencies will need to be resolved 
during the goal analysis process, before a set of consistent requirements can 
be reached. 

On the other hand, the goals of attackers are not considered to be a part, even 
negated, of the security goals of the system, and influence them rather 
obliquely. See 2.2.2 below 

• The (primary) security requirements of the system operationalise the 
security goals by expressing them as constraints on the functions of the 
system (see 2.2.3 below). They are dependent on the definition on those 
functions, since they are constraints upon them. Like any other set of 
requirements, any inconsistencies need to be removed. 

It may not be feasible to implement these primary security requirements 
without additional functionality. In that case derived security requirements of 
the system are added. It may be necessary to revisit the system architecture, 
adding security functionality and/or modifying the existing security 
requirements. 

2.2.2 Security is not Football 

The goals of the system owner and other legitimate stakeholders are not directly 
related to the goals of attackers, because Security is not Football. It is not a zero 
sum game. In football, the goals won by an attacker are exactly the goals lost by 
the defender. However, security is different; there is no exact equivalence 
between the losses incurred by the asset owner and the gains of the attacker. To 
see this, look at two examples: 

• Robert Morris unleashed the Internet Worm [52], causing millions of dollars 
of damage, apparently as an experiment without serious malicious intent. The 
positive value to the attacker was much less than the loss incurred by the 
attacked sites. 

• Many virus writers today are prepared to expend huge effort in writing a still 
more ingenious virus, which causes no or trivial damage (screen message 
"You've got a Virus"). Here the positive value to the attacker, judged by the 
amount of effort he is prepared to invest, is much greater than the loss 
incurred by the attacked site. Generally, there is no simple relationship 
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between the gains of a virus writer and the losses incurred by those who are 
attacked. 

The consequences of security not being a zero sum game include: 

• The evaluation of possible harm to an asset can be carried out without 
reference to particular attackers, with the caveat that, if the impact on the 
defender depended on the particular attacker, then the individual attacker 
would need to be considered when setting security goals. In the approximate 
world of risk analysis, this is unnecessary in practice. 

• Consideration of the goals of attackers cannot be used simply to arrive at the 
goals of a defender to prevent harm, i.e. their security goals. In view of the 
point above, it is not necessary, either. 

2.2.3 Security Requirements 

We define security requirements to be the constraints, on functional requirements, 
that are needed to achieve security goals.  

A simple example of such a constraint is: 

The system shall not provide Personnel Information except to members of 
Human Resources Dept. 

Note that the constraint ("shall not … except to …") is secondary to the function 
("provide Personnel Information"); it only makes sense in the context of the 
function. 

There may also be temporal constraints: 

The system shall not provide Personnel Information outside normal office 
hours; 

and complex constraints on traces: 

The system sha ll not provide information about an organisation to any 
person who has previously accessed information about a competitor 
organisation (the Chinese Wall Security Policy, [9]). 

Availability requirements will need to express constraints on response time: 

The system shall provide Personnel Information within 1 hour for 99% of 
requests. 

We note that this differs only in magnitude from a Response Time quality goal, 
which might use the same format to require a sub-second response time. 

This paper does not claim to provide a complete taxonomy of constraints nor, 
since this is a framework rather than a process or method, does it attempt to 
mandate a specification language. There are discussions of some of the issues in 
sections 5.2 and 5.4 below. 
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2.2.4 Goals, Requirements and Architecture  

The horizontal view shows three phases of development of the artefacts: Goals; 
Requirements; and Architecture. We indicate briefly here what we mean by each 
of these terms: 

• Goal: something that any stakeholder wishes to achieve or avoid. 

• Requirement: a functional requirement, which describes a function to be 
provided by the system in terms of an operation that can be used by an agent; 
or a constraint on a functional requirement. The constraint is an expression of 
a security or other quality requirement, e.g., performance, usability, etc. 

• System architecture: a description of a means of achieving requirements, in 
terms of the interactions between relevant domains. The problem frame 
approach that we use for our case study is one such description; it describes 
how a software specification in a structure of domains satisfies system 
requirements. 

2.3 Process Overview 

The dependencies among the core artefacts influence the possible ways in which a 
security requirements process can be constructed. The process diagram is shown 
as figure 2; the following points should be noted: 

• There are two columns, corresponding to the "normal" application 
development process and quality goals, and the development of security 
requirements. It is assumed that no explicit activity is needed to elicit the 
organisation's control principles, and these can therefore be fed directly into 
the Identification of Security Goals activity. 

• Lines coming out of the bottom of an activity box indicate the successful 
completion of an activity and, except for Validation boxes, carry with them a 
core artefact into the next activity. 

• Lines coming out of the side of an activity box denote failure and imply the 
need to iterate back up the process in order to revise an earlier activity. Failure 
can be one of two kinds: 

• It has been found to be infeasible to create a consistent set of the artefacts 
that are constructed by that activity, or 

• Validation of the artefacts against a higher level, e.g. validation of security 
requirements against security goals, shows that they fail to meet their 
aims. This occurs if it has not been possible to construct a satisfactory 
correctness argument or a vulnerability has been found (see section 4.3.2 
below). 

The iteration may "cascade" upwards if the architecture is not feasible without 
a revision of the business or security goals.  
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2.4 Problem Frames  

We use a notation based on Jackson's Problem Frames [28] as a tool in our case 
study (section 3.3 below) to help derive software security requirements. This 
section presents some background information on problem frames. We do not 
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claim that this is the only possible approach, but it is the most useful one of which 
we are aware. 

In common with other approaches, such as the Concert framework [56], the 
Problem Frames approach recognises that requirements can exist at several levels 
of abstraction. In this approach the focus is on the relationship between 
requirements on the real world system, which Jackson calls simply 
"requirements", and requirements on the software, which he calls the 
"specification". Where there is any ambiguity, we refer to the former as system 
requirements" and the latter as the software specification. 

When using problem frames, a requirements engineer describes problems by 
describing the interaction of domains. The notation describes the domains in a 
problem along with the interconnections between them. For example, in our case 
study (section 3.1 below) the requirements elicitation process for an automatic 
door produces the need for a machine4 to display personnel information on 
request, with requirement the system shall display personnel information to the 
requestor. Figure 3 shows the initial problem description. There are only two 
domains: the Personnel Information Machine, conventionally shown with two 
bars in the box to denote that it will be the subject of the software specification; 
and Person, containing people. The requirements are shown in the oval with a 
dashed line. The connection between the domains is shown by a line between 
their interfaces. It is labelled a to give a reference to a description of the 
interaction phenomena between the domains. In this case there are two: 

P!{Payroll#} and PIM!{PersonInf(Payroll#)} 

P! and PIM! denote that the phenomena are initiated by the Person and machine 
domains respectively, followed by the contents of the phenomena; P can supply a 
payroll number, and PIM can return the personnel information for that payroll 
number. 

Correctness Arguments 

A major aim of this approach is to show, by means of a correctness argument, 
that the problem frame's domains, interactions and specification will satisfy the 
system requirements. This argument may be both positive and negative: 

The positive argument will attempt to demonstrate why the problem frame 
satisfies the requirements. However, it is often impossible to produce a complete 
formal proof of this. 

The negative argument tests the problem frame by searching for contradictions to 
the argument. In the case of security requirements these are called vulnerabilities. 
A vulnerability is discovered, as described by van Lamsweerde [55] in a different 
context, by negating the requirement and then attempting to show that the 

                                                 

4 In our view of problem frames the machine may be an abstract entity; for example, the Personnel 
Information Machine and Credentials Administration Machine that are discussed in 3.3.3 might 
both be implemented in the same physical computer. 
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negation of the requirement can be satisfied. They are discussed further in section 
4.3.2 below. 

Further Notation 

We have found it necessary to extend beyond the standard notation of Problem 
Frames in order to describe security requirements adequately, in two respects: 
trust assumptions; and a causal specification language. 

We introduce trust assumptions [17] in order to make explicit the assumed 
properties of domains on which the satisfaction argument depends. They are 
denoted by ovals with irregularly dashed lines. Examples are found in our case 
study, e.g. section 3.3.2 below. 

The use of a causal specification language is needed because Jackson's book on 
Problem Frames uses state-machine diagrams for the specification of required 
software behaviour. Although guards on transitions can be shown in this notation, 
they are guards whose satisfaction is sufficient to enable behaviour. Security 
constraints need stronger guards also, whose satisfaction is necessary to enable 
behaviour. We are therefore using, as our specification language, a causal 
notation derived from our earlier notation [41] to describe a machine or domain 
specification. The relationship between the interactions described above is 
specified to be: 

P!{Payroll#} shall cause PIM!{PersonInf(Payroll#)} 

shall cause prescribes that the first interaction shall always result in the second 
one. The other element of the notation that we use in this paper is shall prevent, 
which prescribes that the first interaction shall always prevent the second one 
from occurring. It overrides shall cause. 

3. Case Study 

This case study, of a Personnel Information display system, is used to illustrate 
the framework that we have set out above and to bring out further issues for 
discussion. It is unrealistically simple, to enable points to be illustrated easily. 

We use an informal notation for goals, and a notation for requirements that is 
based on Problem Frames, as discussed in section 2.4 above. 

3.1 System Business Goals and Functional Requirements  

We assume that the business goals have been elicited and that there is only one 
goal: 

G1: Provision of people's personnel information to them. 

We assume that initial requirements have been elicited and that there is only one 
functional requirement: 
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REQ1: On request from a Person (member of People), the system shall 
display personnel information (PersonInf) for a specified payroll number 
(Payroll#) to that Person. 

The problem frames diagram shown in Figure 3 is a first attempt at representing 
the requirement. It shows a Person interacting with the Machine, as a result of 
which specified personnel information is displayed.  

 

a: P!{Payroll#}
PIM!{PersonInf(Payroll#)}

Figure 3:  Initial Problem Description

The system shall display 
personnel information to 

the requestor

Personnel 
Information 

Machine (PIM)

Person (P)

a

 

The specification of the behaviour of the PIM is: 

1. P!{Payroll#} shall cause PIM!{PersonInf(Payroll#)} 

3.2 Case Study Part I: from System Security Goals  to System 
Security Requirements 

In this section we will first discuss how to derive security goals and then how to 
obtain security requirements for this application. 

3.2.1 Security Goals System Security Risk Analysis (Assets & Harm) 

Asset Identification 

Examination of the business goal G1 reveals only one relevant asset: personnel 
information. Other assets would need to be considered in a fuller example, 
including: tangible assets such as money, products, or the computers themselves; 
and intangibles such as reputation. 

Harm Identification 

There are at least the following types of possible harm to personnel information: 

H1: Unauthorised disclosure. 

H2: Unauthorised alteration.  
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H3: Unavailability.  

Security Goals 

Having identified the relevant harm, we need to take the step of stating security 
goals for this application, the prevention of relevant harm: 

SG1: Confidentiality: Prevent unauthorised disclosure of personnel information.  

SG2: Integrity: Prevent unauthorised alteration of personnel information.  

SG3: Availability: Ensure availability of personnel information. 

3.2.2 From Security Goals to Security Requirements 

We have now derived and valued the organisation's security goals for a particular 
kind of asset. These goals need to be related to the possible behaviour of the 
system, i.e. its functional requirements, in order to be expressed as security 
requirements, i.e. constraints on those functional requirements.  

Each security goal needs to be examined for possible relevance, and then the 
goals must be operationalised to derive constraints on functional requirements. 
Two separate tasks have to be carried out: 

• Use domain knowledge to transform the entities described in the security goal 
into entities described in the functional requirement. In this case the task is 
trivial, as the security goals directly refer to personnel information. 

• Transform Confidentiality, Integrity and Availability into constraints on the 
operations that are used in functional requirements.  

Security Requirements for Confidentiality 

In order to derive constraints for Confidentiality, we need to know who is 
authorised to access personnel information. In this case we assume that only 
members of Human Resources (HR) Department are so authorised. We can 
therefore state the following constraint: 

REQ1/SR1: The machine shall display personnel information only to 
members of HR Dept. 

This is the application's only security requirement for Confidentiality 

Security Requirements for Integrity 

Integrity is about ensuring that assets are not altered without authority, but none 
of the operations of the Personnel Information Display System alter information, 
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so there are no constraints on operations that are derived for this security goal.  
This application has no security requirements for Integrity. 5 

Security Requirements for Availability 

An Availability goal will be translated into temporal constraints on every 
functional requirement, but for brevity we do not pursue it here. 

Correctness Argument 

Although we are not working with problem frames in this section, it is till 
appropriate to attempt to make a correctness argument, that our security 
requirements will satisfy the security goals. At an informal level, this has been 
carried out by the paragraphs above. At a practical level, the analyst may wish to 
question the step from "authorised" to "members of HR Dept". Is this a necessary 
and sufficient set of people? What about senior managers? Should all members of 
HR Dept be authorised? For the purpose of this example, we will assume that the 
requirement is correct. 

3.2.3 Security Requirements Model 

The security requirements and their context for this system are shown below in 
figure 4. This is a simplified instantiation of the meta-model of figure 1; only 
security goals are shown. 

Personnel 
Information : 

Asset

Disclosure, 
Alteration , 

Unavailability:  
Harm

Harms

Derived from

Operationalises

Figure 4: Security Requirements for Payroll 
Information Display System

Constrains

Confidentiality, 
Integrity,  

Availability: 
Security Goal

Req1 Display 
personnel 

information: FR

Req1/SR1 Only 
Display to HR 

Dept: SR

 

                                                 

5 We assume that there is a requirement for accuracy regardless of whether the application has any 
security goals, and do not consider accuracy in this paper.  
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3.3 Case Study Part II: from System Security Requirements to 
Software Security Specifications 

In this part we will examine how a Software Security Specification can be derived 
from the derived System Security Requirements. Note the difference between 
requirements REQ1 (section 3.1) and REQ1/SR1 (section 3.2.2): 

• REQ1 is a functional requirement upon the behaviour of the Machine, and 
will therefore be (in transformed form) a part of the software specification. 

• The security requirement REQ1/SR1 is a constraint that could be applied 
either in the Person or the Machine domain. It can be achieved either by: 
restricting membership of the Person domain to members of the HR Dept; or 
by ensuring that the Machine domain is able to identify whether or not a 
request has been submitted by a member of HR Dept, rejecting it if not. 

A design decision is therefore needed before we can deal with the impact of the 
security requirement REQ1/SR1on the Machine. 

3.3.1 Introducing the Security Requirements into the Problem Frame  

The problem frame diagram in Figure 3 does not show how the security 
requirement REQ1/SR1 fits into the picture. There are two issues that have to be 
resolved by system design decisions: 

• Where should the security constraint be implemented – in the Person domain, 
the Personnel Information Machine domain, or both? 

• How should we introduce meaning to "members of HR Dept"? 

At the risk of repetition, we stress that this is a system design decision, in the 
domain of system engineering. It may or may not have an impact on the problem 
frame diagram, in any of the following ways: 

• Adding constraints to the machine specification or the properties of other 
domains 

• Altering the interactions between domains 

• Introducing additional domains to the problem. 

We will first deal with the first question, which is relatively straightforward, 
before discussing the issue of representation of identity in answer to the second 
one. What follows is an informal architectural design exercise for the system. 

3.3.2 Constraining the Person Domain 

We could solve the security requirement by requiring the Person domain to 
contain only members of HR Dept, which states that no one but HR Dept 
members can interact with the machine. Although this is not a detailed design 
exercise, we illustrate some ways in which this might be achieved: 
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• By physically isolating the machine from any network and using physical or 
procedural access control (either a lock or a guard to prevent unauthorised use 
of the machine) 

• By using a network firewall to prevent access from any terminals except those 
in HR Dept, for which physical or procedural protection is in force. 

If we make either of these design decisions, then REQ1/SR1 is satisfied outside 
the machine domain, and there is no need to consider REQ1/SR1 in the machine's 
software specification. The Problem Frame diagram in Figure 5 presents a 
solution using a locked room approach. 

Figure 5 illustrates one of the principle uses of trust assumptions, limiting the  
scope of an analysis. To ensure that REQ1/SR1 is truly discharged, the analyst 
would in theory be required to examine how access to the room is limited to HR 
Dept members, bringing structural integrity and key management into the 
problem.  The trust assumption obviates this need by simply stating that the 
analyst trusts the stated indicative property (that access is limited to HR Dept 
members) is true, thereby justifying changing the domain membership from 
People to HR Dept Members.  

 

 Figure 5:  Design with Locked Room

The system shall display 
personnel information to 

people, but only if they are 
members of HR Dept

Personnel 
Information 

Machine (PIM) in 
locked room

HR Dept Members 
(HRDM)

a

Trust Assumption:
Only HR Dept members 

can enter room

a: HRDM!{Payroll#}
PIM!{PersonInf(Payroll#)}

 

The specification of the behaviour of the PIM is identical to that of the original 
problem description (section 3.1 above), because the PIM has no part in 
implementing the security requirement : 

1. HRDM!{Payroll#} shall cause PIM!{PersonInf(Payroll#)} 
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Correctness Argument 

The positive correctness argument for meeting the security requirement is 
straightforward:  

• The only way to use the machine is by entering the room 

• The only people who can enter the room are members of HR Dept, thus 
satisfying the security requirement.  

The negative argument tests each of these steps in turn. Are there any 
vulnerabilities in the statements that: 

• the only way to use the machine is by entering the room? In this case the 
analyst was sufficiently confident that a trust assumption was not thought to 
be necessary. 

• the only people who can enter the room are members of HR Dept? Here the 
analyst had sufficient doubt about it that a Trust Assumption was attached to 
this statement. The risk behind the trust assumption will need to be accounted 
for during a security risk analysis exercise. 

3.3.3 Security Constraint in the Machine  

We now consider the issues involved in implementing the security constraint in 
the machine, instead of (or as well as) in the People domain. It will now be 
necessary to include some information relating to the identity of the requestor in 
the interaction between P and PIM. There are several possibilities for changing 
the P! and/or the PIM! interactions.  

To illustrate the number of design possibilities, here are two that we reject: 

• Encrypting the information in the PIM! interaction so that it can only be 
understood by a member of HR Dept. This has the disadvantage of needing a 
lot of functionality in the Person domain and, without some elaboration, is 
inflexible. 

• Include a constant password (known to all members of HR Dept) in the P! 
interaction, and "hard code" knowledge of the password in the Machine. The 
Machine is required to refuse the request unless the password is correct. This 
is cheap to implement, but suffers from the obvious vulnerabilities of shared 
and unchanging passwords. 

Instead we will use a simple version of user identification and authorisation in 
which, with each request, the Person provides a User Id and credentials. UserId is 
the claimed identity of the person who submits the request. Credentials are 
authentication information, such as a password, that provides assurance that the 
interaction has actually been initiated by the person who is identified by UserId.  

This design decision is attractive for a variety of reasons, including: 

• Use of a personal identity makes it possible to provide Accountability (which 
requires verification of who has carried out an action), which is often an 
organisational goal. 
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• Use of a user / credentials combination is familiar, implementable in standard 
ways, relatively cheap and adequately secure for many purposes6. 

The original requirements are unchanged, but there are two additional functions, 
which we assume are already in existence, for giving people their UserId and 
credentials, which are stored in a Credentials Store. 

FUN1: Administrators shall give UserId and credentials to members of the 
HR Dept. 

FUN2: Administrators shall store UserId, credentials and HR Dept 
affiliation in the credentials store, for members of the HR Dept. 

Correctness Argument 

Since we have changed the problem frame, it is necessary to iterate the 
correctness argument, that these requirements satisfy the system goals. However, 
since the security requirement is unchanged, we do not need to do this here. 

PIM Problem Frame 

The design is shown in figure 6. Each time a request is submitted, PIM submits 
the UserId and credentials for validation, and only fulfils the request if they are 
valid. 

b: P!{ UserId, credentials, Payroll# }
    PIM!{ PersonInf (Payroll#) | No }

c: PIM!{ Validate(UserId , HR, credentials) }
    CS!{ Yes | No }

Figure 6:  Design with Authentication
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The specification of the behaviour of the PIM system is now as follows: 

1. P!{ UserId, credentials, Payroll#} shall cause  
PIM!{ Validate(UserId, HR, credentials) } 

2. if isValid(UserId, credentials))  
 PIM!{ Validate(UserId, HR, credentials) } shall cause CS!{Yes} 
else PIM!{ Validate(UserId, HR, credentials) } shall cause CS!{No} 

3. CS!{Yes} shall cause PIM!{ PersonInf(Payroll#) } 

                                                 

6 Of course it also has certain well-known vulnerabilities, which would need to be considered in 
the risk analysis. 
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4. CS!{No} shall cause PIM!{ No } 

The truth or falsity of the isValid predicate is determined by the contents of the 
Credentials Store. 

Correctness Argument 

The positive correctness argument for meeting the security requirement is as 
follows:  

• The only way for a person to use the machine is by entering a request 
including UserId and credentials 

• The only people who can present a UserId with valid HR credentials are 
members of HR Dept 

• The machine will not satisfy that request without first validating the 
credentials by an interaction with the credential store. 

• The credentials store will only return Yes if the UserId is for a member of HR 
Dept and has valid credentials.  

• The machine will not satisfy the request unless the answer is Yes. 

Again, the negative argument tests each of these steps in turn, highlighting those 
that are in doubt by means of trust assumptions. 

Credentials Administration Problem Frame 

Since the administration of identities and credentials has entered the problem, our 
problem frame context needs to be expanded. 

Figure 7 shows how credentials are administered, showing that a human 
Administrator gives a UserId, Dept affiliation and credentials to People, and then 
provides the same information to the Credentials Administration Machine 
(CAM). This causes the CAM to store the information in the Credentials Store.  

The specification of the behaviour of the CAM machine is as follows: 

1. A!{create(UserId, Dept, credentials)} shall cause  
CAM!{store(UserId, Dept, credentials)} 
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Credentials storage 
(CS)

f

 

d: A!{give(UserId , Dept, credentials )}

e: A!{create(UserId, Dept, credentials )}

f: CAM!{store(UserId, Dept, credentials)}

Figure 7:  Administration of Credentials
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3.4 Review of the Case Study 

What steps did we go through in our attempt to define the requirements for a 
workable secure system? We can identify the following: 

• An initial definition of system requirements and problem frame in section 3.1 

• A revised definition of the system requirements to include security 
requirements, in section 3.2.2 

• Introduction of the security requirements into the problem frame in section 
3.3.1, using the UserId approach, which is infeasible with the original 
Problem Frame 

• A solution, using the UserId approach, in section 3.3.3. This was infeasible 
with the original problem frame. The problem frame needed modification.  

• Since the problem frame had changed, it was necessary to iterate the 
correctness argument, that the requirements met the goals, although this was 
trivial in this case 

• This finally enabled us to define a software specification that, given the trust 
assumptions, could be argued to satisfy the system requirements.  

4. Discussion 

A number of issues have arisen in the course of expounding our view of security 
requirements artefacts. 
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4.1 Security Goals 

4.1.1 Characteristics of Security Goals 

An organisation's security goals have some characteristics which make them hard 
to manage: 

• They cannot immediately be discharged by the specification of requirements, 
but have to be re-interpreted at each iteration of the design. 

• They may interact with each other. 

Security Goals are not Discharged by Security Requirements 

At every iteration between requirements and design, whenever a new functional 
requirement is introduced that requirement must be evaluated against the security 
goals and appropriate security requirements introduced. One cannot assume that 
the existing security requirements are sufficient in the presence of new functional 
requirements. 

For example, although some security requirements may be necessary to achieve 
the Confidentiality goal, they may not be operating in isolation. We will assume 
that there is also an Availability goal to be achieved, and that one of the means of 
achieving Availability is to perform regular data backups. A Backup functional 
requirement will therefore be introduced at a later iteration of our requirements. 
This implies in practice that a copy of the information exists that can be read 
using a function that was not defined in our original requirements. Unconstrained 
use of this function can violate the Confidentiality goal, and therefore there will 
need to be a security requirement that constrains its use. At a still later stage, an 
engineer's access to the Machine for maintenance purposes can also provide 
access to the information, using yet another function, which generates yet further 
security requirements. 

The original security goal has not changed, but at each iteration of the 
requirements, when additional functions are introduced, additional security 
requirements to constrain the use of those functions may need to be added. 

Security Goals Interact 

Security goals interact. For example, it might be decided to introduce an 
encryption function in order to achieve Confidentiality. This is a new function for 
the system, and its use must be evaluated against all the security goals. One of 
those goals is Availability, and analysis shows that Availability is threatened by 
the loss of a secret key; our solution to confidentiality has undermined 
Availability.  Therefore further measures need to be taken to ensure that the 
Availability goal is still met, either by ensuring that the secret key is always 
available or by reconsidering the design decision. 
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4.1.2 Are All Security Goals Negative? 

Most security goals should be represented as the avoidance of harm. We have 
sympathy with the view of van Lamsweerde in [55], where only Confidentiality is 
described as an Avoid goal, with Integrity and Availability being Maintained and 
Achieved. However, it is necessary to consider the amount of possible harm in 
order to decide how important each goal is. 

We are leaving it as an open question at present whether there are other 
application security goals, which do not need to be related to the possibility of 
harm to assets. For example: 

• Is Anonymity a separate goal, or is it better regarded as a means of achieving 
a goal such as Confidentiality?  

• Should provision of the Provenance of information, to help judge the amount 
of reliance that can be placed on the information, be regarded as a separate 
goal? 

In neither case do we have a definitive answer. 

It is clear that other security goals can be stated directly, if they arise from an 
organisation's management control principles, derived from previous experience 
of the need for security. For example, the Principle of Least Privilege – that no 
one should have more authority than is needed to carry out there duties – may 
have been adopted generally by an organisation. It can be used directly to derive 
system security requirements without the need fo r a detailed consideration of 
possible harm. However, the lack of a "value" – an assessment of the amount of 
harm that it prevents – for a goal of this kind makes it more difficult to manage 
when trade-offs become necessary. 

4.1.3 Derived Security Goals 

Where do security goals come from? The obvious source is as described above, 
from threats of harm to an organisation's assets, e.g. a bank's goal not to lose its 
own money. 

However, they may arise indirectly from other goals. An example of this is a 
bank's goal to maintain a good reputation. A necessary condition is that it should 
be able to demonstrate its commitment to protect its customers' money, in 
addition to its own. Therefore there is a derived goal – protect customers' money – 
which depends upon the bank's Reputation goal.  So, eliciting security goals 
cannot be done from a narrow security perspective; all of the organisation's main 
goals have to be taken into account. 

4.2 Security Requirements 

4.2.1 Why Define Security Requirements at all? 

As remarked in the Introduction, there seems to be a curious reluctance in 
previous published work to define any explicit representation of security 
requirements. We have already made the point in motivating our work (section 
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1.2.2 above) that their representation is important because of the possibility of 
conflict between stakeholders. In addition, since traceability of requirements is 
essential, we need to be able to refer to each individual security requirement.  

If we accepted that it is necessary to be able to refer to security requirements, why 
have we chosen to define them as constraints? We do not claim to be correct in 
defining security requirements as constraints on functional requirements; we are 
proposing a software engineering approach, not carrying out scientific research.  
Our reasoning for proposing this as a useful definition is as follows: 

• Requirements specifications, in general, describe the functions (or operations 
or services) to be provided by a system. 

• It is clearly desirable for the specification to describe security requirements in 
a way that enables them immediately to be related to the functions. 

• Constraints upon functions are a natural way to do this. 

Other candidate forms for security requirements, which we have rejected, are: 

• Security goals. Security goals are necessary as a starting point, but they are 
more abstract than functional requirements, and may conflict. If designers 
were only given security goals to work with, it would be necessary for them to 
carry out further work that belongs in the domain of the requirements 
engineer: deciding how the security goals should be operationalised in the 
requirements; and resolving conflicts when necessary. 

• Security functions. A security function such as encryption is part of the 
solution, and the specification of security requirements in terms of security 
functions may lead to a non-optimal and/or an incomplete design.  

It appears to us that, in order to ensure that requirements engineers and system 
designers each work within their appropriate limits, the appropriate boundary 
between security requirements engineering and security design is provided by our 
proposal. 

Why a Software Security Specification Cannot Be Considered Alone 

We are insisting that security requirements must be regarded as a systems 
engineering problem, and that software security cannot be considered on its own.  
This contrasts with Michael Jackson's explicit focus [28] on the computer and its 
software. There are several reasons for our approach, which needs a broader 
approach than his because the concerns are wider: 

• Security goals, unlike functional goals, cannot be discharged by the 
specification of a suitable constraint or function; they must be considered at 
every iteration of the development activity. 

• Security analysis needs to consider several domains simultaneously. 

• Security requirements may constrain domains other than the machine. 

• Security principles, hard-won by experience, require a systems approach. 
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4.2.2 Residual Security Requirements? 

It is often stated that security is only as strong as its weaknesses, and it is 
therefore important for it to be complete. We must therefore ask whether, by 
specifying constraints on the functions that are to be provided by an application, 
we have produced a complete set of security requirements? 

If we assume that we have a complete statement of the organisation's security 
goals, and have taken them all into account in deriving the constraints, then the 
answer is Yes. It would be tempting to include another requirement for an 
application: "and nothing else must happen" so as to ensure that the designers do 
not assume that they need do nothing else to ensure a secure system. 

However, we have no means of expressing what we mean by "nothing else", so 
we are stating a general goal, rather than providing a specification of security 
requirements to a designer, and there is no point is adding "and nothing else" to 
the security requirements. However, we should recognise that the security goals 
have not been discharged by the specification of constraints on system functions; 
that is a necessary, but not sufficient, condition for the satisfaction of the security 
goals by the implementation.  

This is a proper separation of concerns. To take an example from the case study, 
the organisation has a security goal of Confidentiality of Personnel Information. If 
it is to achieve this goal, then it will have to state security requirements on a 
number of activities and domains, including securing the engineer’s hardware 
interface and communications infrastructure. By proposing a new application we 
have introduced some additional functions by which the security goal could be 
breached and the security requirements for the new application is properly and 
completely expressed as appropriate constraints on the functions. 

Two issues arise: 

1. Additional functionality introduced in the design; 

2. The properties of the machine within which the application is embedded. 

Additional Functionality Introduced in Design. When the system requirement 
results in a design, then the implementation of that design may result in additional 
functions, adding ways in which security goals could be violated, e.g. through the 
engineer’s hardware interface or through a hacker intercepting communications. 
In order to achieve the organisation’s security goals, additional operational 
security requirements will need to be derived, from the security goal, for the 
engineer’s system and the communications infrastructure.  

Machine Properties. The application will almost always be run on an existing 
operating system and using existing utilities. This software will provide additional 
functionality, and therefore expose the application to additional risks. Analysis of 
these risks is essential, and the security requirements for the application will need 
to take them into account, but the risk analysis of this software is independent of, 
and prior to, the development of security requirements for the application. 
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So, our conclusion is that, if the analysis has been done thoroughly, the security 
constraints do constitute the complete set of security requirements for the 
application as far as it is understood at that point. However, the organisation's 
security goals are never discharged until there is an implemented system, and the 
security goals must be revisited whenever additional functionality is proposed 
during the course of development. 

4.2.3 Security Requirements and Security Properties 

Security "properties" are often referred to, especially in formal specifications; for 
example, Heitmeyer [20] gives examples, some of which are predicates on state, 
and others predicates on the relationship of successive states. We need to consider 
how they fit into this framework. Most security properties are expressed in terms 
of constraints on traces of the behaviour of a system, and this fits in very well 
with our own view of security requirements as constraints on the operations of a 
system.  It emphasises that realistic security requirements are likely to be far more 
complex than the simple constraints that we have used in this paper.  

Some security properties may, of course be expressed at a lower level than system 
requirements, and it will only be possible to discuss them at that lower level. 

There are security properties, such as "no covert channels", which do not conform 
to the constraint model. They are like the "and nothing else must happen" 
requirement of section 4.2.2 above, and we take the same view, that they are not a 
concern for system security requirements, but must be addressed at a design or 
implementation level. 

4.2.4 Quality Constraints and Security Requirements 

A set of requirements can contain many constraints on functions, derived from a 
variety of goals, e.g. constraints arising from all the other quality goals that are 
relevant to a system, such as performance and reliability. If we examine a 
constraint, such as the following, how do we know that it is a security 
requirement? 

The machine shall not display Personnel Information except to members 
of HR Dept. 

The answer is, we cannot identify this as a security requirement from its contents 
alone. Why not? Consider a hypothetical Personnel Information Display System 
in an environment in which the honesty and discretion of all users has never been 
in any possible doubt, so that the organisation has no need of any security goals at 
all. However, it has a goal of Comprehensibility, and the Personnel Information is 
so difficult to understand that it is considered essential for all information to be 
interpreted by members of HR Dept, rather than being directly available to all 
users. Then, although there is no Confidentiality goal, the constraint has been 
derived in order to satisfy the Comprehensibility goal, and it would be reasonable 
to call it a comprehensibility requirement, not a security requirement. 

From this we conclude that any particular constraint is identified as a security 
requirement by the source goal from which it is derived, and not from its contents. 
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Of course, a constraint can be derived from multiple goals and therefore belong to 
multiple categories. 

4.3 Analysing Security Requirements 

Although this paper is not about analysis, some comments about its role are 
needed. We make the conventional distinction between verification and 
validation: 

• Verification is about the analysis of an artefact on its own, ensuring its 
completeness and internal consistency; 

• Validation is about the relationship of the artefact to the artefacts from which 
it is derived: in the case of goals and requirements, whether the system 
requirements satisfy the system goals and whether the software specification 
satisfies the system requirements. 

We demonstrate, using a very simple example from our case study, that analysis 
is possible and useful at an early stage. There is a security requirement that People 
who are not members of HR Dept are prohibited from displaying personnel 
information. Analysis (in this case informal) shows that this constraint does not 
prohibit a member of HR Dept who is currently suspended, possibly because of 
allegations of dishonesty, from seeing personnel information. This will certainly 
be regarded by the customer as an example of unauthorised access, so that the 
security requirement, as stated, is invalid. A more tightly specified security 
constraint is needed and will be straightforward to generate. 

4.3.1 Internal Analysis (Verification) 

Security requirements are simply a set of statements, and are therefore subject to 
the same kind of internal analysis as any other similar set. Taken as a whole are 
the functional requirements and their associated constraints complete and 
mutually consistent? For example, security constraints can be mutually 
inconsistent or conflict with safety constraints. This verification activity is not 
special to security requirements, and we do not discuss it further. 

4.3.2 External Analysis of Security Requirements (Validation) 

Even if internal analysis of the requirements has verified that they are consistent, 
validation is still necessary at two stages.  

• Are the system security requirements a valid refinement of the security goals? 

• Is the problem frame, including its software security specification and trust 
assumptions, a valid refinement of the system security requirements? 

At each stage there are two kinds of analysis that are appropriate: 

• Construction of a correctness argument, that the refinement is correct; 

• Vulnerability analysis: the discovery of flaws in the system security 
requirements so that they do not satisfy the security goals (first stage); or 
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flaws in the problem frame so that it does not satisfy the system security 
requirements (second stage). 

Correctness Arguments 

Correctness arguments are seen by Jackson as an integral part of the problem 
frames approach and there is no reason why the introduction of security 
considerations should affect this. Ideally, a proof of correctness would be all that 
is needed, but a variety of factors, including ambiguity of descriptions, false 
assumptions, incomplete specification of the context and the complexity of 
systems, mean that vulnerability analysis is always necessary. 

Correctness arguments have two kinds of va lue: 

• They give confidence that the initial design is, at least prima facie, correct; 

• They are one way of providing structure to the process of vulnerability 
analysis. 

Vulnerability Analysis 

Vulnerability analysis finds weaknesses in a design, which show that it does not 
satisfy its requirements. van Lamsweerde [55] demonstrates vulnerabilities in 
software by showing that the software is able to satisfy the negation of a security 
goal. In doing this he demonstrates an important aspect of vulnerability analysis; 
it validates a lower-level artefact against a defined higher- level one. By contrast, 
Liu, Yu & Mylopoulos[37] and Lin et al [36] both describe methods of analysing 
possible "illicit" use of a system, but neither define the requirements or goals that 
this illicit use violates.  

One of the difficulties for vulnerability analysis is to propose a methodical 
approach to discovering vulnerabilities. In the past this has been done by attack 
teams who rely upon ad hoc methods; it seems likely that most of the flaws 
described by Landwehr in [32] were discovered in this way. Proposals for tree-
structured methods, such as Schneier's Attack Trees [49] suffer from two 
disadvantages: 

• They do not provide any initial structure from which to start the analysis 

• There is no way of knowing whether enough branches have been discovered. 

The safety critical world has developed a more methodical approach, based on 
HAZOPs [29], a systematic method of describing what can go wrong in a 
chemical plant by applying key words such as TOO MUCH, or TOO LATE to 
each element of the plant. Any deviations that are discovered can be pursued in 
two directions, by means of cause-consequence analysis: 

• Cause analysis follows an attack tree downwards in a search for 
vulnerabilities 

• Consequence analysis searches upwards to discover what harm might result 
form the deviation. 
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This has been extended to software and, more recently to requirements by 
Srivatanakul et al in [53], which applies the HAZOPs technique to UML use 
cases. This provides some assurance of completeness of coverage, on the 
assumption that the use case describes all possible happenings. Also, it gives a 
structure to the start of the vulnerability analysis. 

Another possible approach is to generate vulnerabilities by considering each step 
of the correctness argument in turn, which we have found useful in removing 
errors from our own case study, but we are not aware of any systematic work on 
this. 

Our own work [17] on trust assumptions provides a focus point for discovering 
vulnerabilities, by considering the consequences of failure of the assumptions. 
Our work on threat descriptions [18] helps to locate the points where trust 
assumptions are necessary by considering where assets are used. 

Other published work on vulnerability analysis has come from three areas: 

• Goal refinement 

• Abuse and misuse cases 

• Abuse Frames. 

Goal Refinement 

The extension of the KAOS goal refinement method to vulnerability analysis 
[55], and a complementary technique in i* [37] have been mentioned above. 

Abuse and Misuse Cases 

Abuse and misuse cases [2, 38, 50] are techniques that have been developed to 
elicit security requirements by demonstrating vulnerabilities in use cases, though 
less systematically than the HAZOP-based technique mentioned above. It is not 
clear whether they are intended for use in eliciting and validating system security 
requirements or a software security specification. It appears to us that they could 
be used at either level. 

Abuse frames 

Abuse frames [36] are a technique, currently under development, that uses 
problem frames. It identifies possible illicit behaviour as a result of two 
possibilities: 

• Behaviour that is permitted by the combined properties of the domains 

• Behaviour that is permitted as a result of perturbation of the problem frame, 
by changing either the domain properties or the frame topology. 

4.4 Covert Channels 

Covert channels were originally identified by Lampson [31], and are defined by 
him as information channels that are not intended for information transfer at all. 
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As Axel van Lamsweerde has pointed out7, there is the possibility of creating, and 
detecting, covert channels in the course of generating requirements. 

Using an example based on his suggestion, suppose there is a proposal to create 
an electronic purse system with a superset of the following goals: 

Enquire about purse limit (functional goal) 

Put money into the purse (functional goal) 

Only the purse owner should be able to know their purse limit (security 
goal) 

Users should know whether their actions are successful (usability goal). 

This can be refined to operationalised requirements and constraints: 

Enquire about purse limit, but only the purse owner is permitted to do this 

Put money into the purse, with no constraint on who is permitted to do 
this. 

In order to meet the usability goal, the operations will return a Success or 
Failure response. 

Given these operationalised requirements, it is possible for an attacker to discover 
a lower bound on the owner's purse limit, by successively putting money into the 
purse until a Failure response is received. This is a covert channel, which is 
created, by the conflicting goals of confidentiality of the purse limit and the need 
to provide responses to invocations of operations 8. 

Most covert channels are introduced during software design and programming, 
and hardware design: they are outside the scope of requirements analysis. 

4.5 A Multi-domain Approach 

There is ample evidence that security has to be considered in every relevant 
domain. It is not by chance that Kevin Mitnick, the arch-hacker of recent times, 
whose exploitation of IP spoofing and other weaknesses in the TCP/IP protocols 
has given rise to a whole new generation of technical attacks, has written a book 
on Social Engineering [39]. His attacks illustrate the exploitation of 
vulnerabilities arising from a combination of the properties of human 
(procedural), physical and software domains.  

Michael Jackson's work on Problem Frames [28] has enabled us to articulate a 
multi-domain approach. Requirements are about what happens in the world, while 

                                                 

7 Personal communication. 

8 We are not aware of a solution to this particular covert channel, without some element of 
compromise. 
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software specifications only deal with interfaces. As we emphasise below, 
security is about protecting real-world assets, while many security techniques are 
expressed entirely in terms of the behaviour of software. So problem frames are 
an essential element in our exposition of security requirements. 

In one respect we differ from Jackson, not because we believe that his approach to 
his chosen problem area is wrong, but because our concerns are different. He 
explicitly regards the machine as the optative target of specification, and all other 
domains as indicative. As showed in our discussion of the case study, we do not 
take this approach. All kinds of security constraint – physical, procedural and 
software-based – need to be considered, and probably used in combination. 

A consequence of this is that we use Jackson's biddable domains (usually, people) 
in their true dictionary meaning: "docile; obedient".  We accept that they lack 
"positive predictable causality … the most that can be done is to issue instructions 
to be followed", but in the security world this is true of computers as much as it is 
of people. Both computers and people can be programmed or "trained to follow 
stipulated procedures and can be expected to do so". Both computers and people 
may fail to follow the procedures and we must allow for this in our security 
design. This principle is already well established in system safety engineering, see 
e.g. Leveson [35] where a combination of physical, procedural and software 
safety measures is used, taking into account the likelihood of failure of any of 
them. 

Multiple Domains and Security Principles 

There are two principles (see, e.g. Zwicky and Chapman [57]) that should be 
obeyed when designing for secure systems: 

• Defence in Depth: it should always be assumed that a constraint is fallible, so 
if one fails, another should still prevent a successful attack on an asset. 

• Diversity of Defence: Defence in Depth is more likely to be successful if the 
defences that are used are diverse in nature. 

It is therefore desirable, whenever possible, to supplement security measures of 
one kind with those of another; a combination of physical, procedural and 
software security is likely to be most effective. These principles reinforce the 
need to take a multi-domain approach. 

4.6 Security Functions 

A security framework discussion would not be complete without a mention of 
security functions. Where do functions such as access control, authentication, 
encryption, etc, fit in? Our answer is that they are functions (full stop). We use the 
same argument as for constraints in section 4.2.4 above. If the designer includes a 
function in order to satisfy a security requirement (i.e. derived from a security 
goal), then we could reasonably describe it as a security function, but if that same 
function is used to satisfy some other kind of goal, that is a different matter. 

Pursuing the example of section 4.2.4 above, if we have a Comprehensibility 
requirement that only members of HR Dept are permitted to read Personnel 
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Information, and we decide to implement that using authentication and access 
control functions, then these functions should be described as Comprehensibility 
functions. On the other hand, if they are used in their more common role of 
supporting security requirements, then we will call them security functions. 

4.7 Security Policies 

"Security Policies" is a phrase used extensively in the literature, but it has been 
used with such a wide variety of meanings that we have avoided its use in this 
discussion. However, some of those meanings are related to security 
requirements, and so we provide a brief survey of security policies here. 

We have found the following main uses of the phrase: 

• An organisation's security policy document 

• Individual policies, either part of a policy document or issued individually by 
an organisation. They are not discussed further here, as it is impossible to 
generalise about them. 

• Access control policy, of which there are several kinds 

• Mechanisms for establishing parameters for security functions, such as 
authentication or cryptography, in secure peer-to-peer communication 
sessions, as in IPsec [45]. 

4.7.1 Security Policy Document 

An information security policy document is advised by any text on information 
security management, as exemplified by BS 7799-1 (ISO/IEC 17799) and BS 
7799-2 [10, 27]. It sets out the security goals for each area of information 
technology. Some of these are general goals, some expressed at the requirements 
level and some are quite technology-specific. A summary of a recommended 
information security policy can be found in appendix A.3 of BS 7799-2. It, like 
most policy documents, does not limit itself to the behaviour of software, but also 
covers physical and procedural policies. 

A good security policy document sets out security goals, and more concrete 
requirements and design attributes where the organisation has made decisions in 
order to avoid each application needing to repeat the goal refinement process.  

4.7.2 Access Control Policy 

Access control policies are often referred to as models. They are limited in scope 
to access control, specifically to the behaviour of the Access Decision Facility of 
a Reference Monitor [3, 24]. They constrain access attempts to a specific pattern.  
There are several different kinds of this policy: 

• Global access control policies, built into a system 

• Mandatory Access Control mechanisms 

• Discretionary access control policies. 
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In the discussion below we attempt to fit them into the following categories: 

• Development process requirements 

• Requirements 

• Mechanisms. 

4.7.3 Global access control policies 

These are policies that are entirely "hard coded" into a system. 

Specific Constraint on Operations 

From our point of view the simplest access control policy is one which states a 
specific global constraint on operations. Brewer & Nash's Chinese Wall Security 
Policy [9], already mentioned (section 4.2 above) states the following constraint 
on traces:  

The system shall not provide information about an organisation to any 
person who has previously accessed information about a competitor 
organisation. 

This kind of policy can be directly stated as a security requirement. 

Process-defined Constraint on Operations 

The Clark-Wilson Integrity Model [11] also specifies a constraint upon 
operations, but less directly. To apply this model, the developer identifies 
Constrained Data Items (CDIs) whose integrity requires protecting and then 
ensures that they are only manipulated by well- formed transactions 
(Transformation Procedures, or TPs) which can be guaranteed to maintain the 
integrity predicates required by the system, e.g. no net change in value when 
performing a double-entry accounting transaction.  Integrity Verification 
Procedures (IVPs) need to be run periodically in order to audit that the data 
conforms to the integrity predicates. 

This is a combination of a development process requirement (identifying CDIs 
and defining their integrity predicates) and design of TPs and IVPs to conform to 
and verify the integrity predicates (security requirement). It appears that the 
integrity predicate itself is nowhere directly represented in the system (contrast 
with System Management Policies, below), so a system audit cannot verify, by 
inspection of the code alone, whether the system conforms to a Clark-Wilson 
policy. 

Clark and Wilson also recommend the use of Separation of Duties for operating 
upon CDIs. This is another example of specific constraint on operations 
(discussed above). 

4.7.4 Mandatory Access Control Mechanism 

The access control literature makes the distinction between Mandatory and 
Discretionary access control policies: 
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• Mandatory access control (MAC) policies cannot be changed by users of the 
system 

• Discretionary access control (DAC) policies can be added, removed and 
altered by users with appropriate authority. 

A MAC policy defines mechanisms to enforce mandatory constraints on access 
control. In these policies, there is a built- in mechanism to enforce control, but the 
actual decisions depend upon labels, attached to subjects and objects, that can be 
altered by a privileged administrator. 

The Bell-Lapadula policy model [7] is a MAC policy. In contrast to those 
discussed above, does not directly define any constraint on operations. Instead it 
provides a mechanism for doing so. It requiring that principals and data objects 
should each be associated with labels, called Clearance and Classification 
respectively. The labels are partially ordered. The policy enforces the constraint 
that a subject is only permitted to read a data item if their Clearance is the same 
as, or dominates, the data's Classification. The Biba Integrity policy [8] provides a 
similar mechanism intended to ensure data integrity; for further discussion of this, 
see Sandhu's taxonomy of data integrity [47]. 

Should requirements engineering be concerned with mandatory access control 
polices, since they are essentially mechanisms? Possibly not, but there is an 
aspect which could be relevant: the ability of some of them to withstand Trojan 
Horses. Downs [14] motivates their use by pointing out that the Bell-Lapadula 
model enables the prevention of leakage of information by Trojan Horses. Since it 
is impossible to guarantee the absence of Trojan Horses from those parts of a 
system outside its Trusted Computer Base [13], they can be rendered incapable of 
passing information to uncleared subjects if the model is implemented. So a 
requirement to prevent Trojan Horses leaking information can be stated knowing 
that there is an implementation mechanism to achieve it. 

4.7.5 Discretionary Access Control Policies 

Discretionary access control policies (see, e.g. [40]) are used to specify the 
constraints on operations by means of access rules that can be altered by users 
with appropriate authority. We include Sandhu et al's Role Based Access Control 
[48] here. Discretionary access control policies clearly have characteristics in 
common with security requirements, but are not identical to them: 

• They express constraints in a way similar to security requirements, but are 
expressed in terms of the objects known to a machine, e.g. UserIds and files, 
rather than those that exist in the real world, e.g. people and information.  

• They may be at a high level, suitable for the specification of requirements, but 
are often at a very detailed, implementation-dependent level. 

• They can be altered by operations of the system. In this respect they differ 
from normal requirements, whose change typically requires passage through a 
change management process and regeneration of the system. 
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• They are dependent on the Access Decision Facility of a Reference Monitor, 
and so are not suitable for the definition of security requirements that might be 
implemented by encryption or some other security mechanism. 

The Harrison-Ruzzo-Ullman model [19] specifies constraints within which 
alterations to access rules can be made in a discretionary model. 

Distributed System Management policies 

Distributed System Management policies [51] were introduced to enable flexible 
management of a distributed system. They contain two elements: 

• Obligation policies, which trigger defined management actions on the 
occurrence of pre-defined events; 

• Authorisation polices, which are simply discretionary access rules. 

These policies are represented as objects which can be manipulated at run-time, in 
the Ponder language [12], and are therefore more flexible than static policies. 

5. Open Issues 

5.1 Security Requirements in the Presence of Implementation 
Flaws 

We have been proposing a framework for security requirements with the implicit 
assumption that designers will then implement a system which satisfies those 
requirements completely. This assumption is, of course, untrue. The platforms 
upon which the systems will be implemented will contain a great deal of 
unwanted functionality, much of which will violate the security requirements, as 
documented in CERT9 alerts.  

There is therefore a need for investigation of how we can configure problem 
frames so that, while knowing, that the individual domains are flawed, the risk of 
violation of the security requirements is minimised. This is a subject for future 
research, although much work has been done on fault-tolerance, e.g. Lee [33], and 
it should be possible to make progress on the requirements of security fault-
tolerant systems. 

5.2 The Need for a Taxonomy of Constraints 

We have given some examples of constraints as security requirements, but have 
not attempted a full taxonomy of relevant constraints, although there is a need for 
this. There appear to us to be several issues requiring further work: 

                                                 

9 http://www.cert.org/ 
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Constraint Expressions 

Constraints that express security requirements will always be constraints on 
operations, but what are the contents of the constraint expression?  It appears to us 
that it will include at least some of the following elements, and possible more: 
predicates on the parameters of the operation, its originator and source; temporal 
constraints; and constraints on traces of the behaviour of a system.  

Grey Security Requirements 

Security requirements tend to be expressed in black and white terms, but actually 
total security is unobtainable, and so security requirements need to be toned down 
accordingly. Henning [21] examines whether security related service level 
agreements, analogous to other service level agreements, might be possible. Irvine 
& Levin [23] discuss the concept of quality of security service. It is clear that the 
measurement of levels may have to very approximate in many cases: more a 
rough level of uncertainty than a precise figure. Different units may need to be 
used, reflecting the different approaches to assurance that are to found in the 
Common Criteria for security evaluation [26]; the work factor needed to break the 
requirement by known means, an estimate of its vulnerability to as yet unknown 
means of attack and the degree of assurance that the design and  implementation is 
free of flaws, may all be factors in the measurement. 

Availability Requirements 

On the face of it, availability requirements can be regarded as temporal 
constraints on the response time of operations. System availability requirements 
can be regarded as universally quantified constraints on the response time of 
operations. Response time constraints are quite different from the constraints 
mentioned above, but are very similar, if not identical, to the constraints that are 
needed to specify performance requirements. Work is needed to see if this 
approach accurately reflects the requirements of real users.  

5.3 Data-driven Security Requirements 

All of our discussion so far has been function-driven; we have been advocating an 
approach in which an application is examined for functions which, if misused, 
could cause harm to assets. However, a high proportion of an organisation's 
computer-related assets are represented directly by corporate data that is held in 
databases. The harm that could be caused to an organisation depends upon the 
data, independently of the application that manipulates it, and therefore the 
security requirements can be attached to the data itself. 

The Clark-Wilson Integrity Model [11], discussed in section 4.7.3 above, does not 
include a concept of a direct representation of integrity predicates. However, 
database integrity predicates, familiar from database textbooks such as Garcia-
Molina [16], do directly represent and store integrity predicates for data items, 
and maintain integrity by refusing to commit any transaction that would violate 
the predicate, or taking corrective action. 
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Although it is not clear that the concept of integrity in the database world is 
identical to that in the security world, if it were possible to identify the security 
requirements for individual data items this would ease the task of security 
requirements engineering for individual applications. This is in the same spirit as 
a control principle that mandates separation of duties for critical data items, but 
more systematic. 

5.4 Specification Notation 

This paper presents a framework, intended to encompass diverse means of 
expression, and we do not intend to mandate any particular specification notation, 
although we have ourselves found the problem frames approach useful. If a 
formal specification notation is used for functional requirements, then security 
requirements could be stated by formal predicates. On the other hand, if the 
functions are defined less formally, then so will be the security requirements. 
However, there are at least two general issues of specification notation, which 
need further research: 

• Structuring security requirements 

• How to state security requirements without using too many negatives. 

• Structuring Security Requirements  

Although the problem frames approach has been very useful in presenting the 
relationship between system and software security requirements, our presentation 
has gone beyond the bounds of the standard approach. Further work is needed on 
problem frames in this area, and also investigation of whether there are any other 
structuring approaches, e.g. in the area of safety critical systems engineering, 
which could be valuable. 

• Stating Security Requirements  

The reader will have noticed some awkwardness in the language used in the case 
study. Phrases such as "shall not display … except to …" do not trip lightly from 
the tongue. It would help if the number of negatives that are used could be 
reduced. 

The default assumptions of Access Control Systems (see any computer security 
textbook) would adapt very conveniently to security requirements, and their 
possible use should be studied. In particular, the three levels of priority of access 
control statements, using the Closed World assumption, might transplant 
conveniently to security constraints: 

• The Closed World assumption – if no positive permission is stated, the default 
is prohibition 

• Positive permissions override the default 

• Explicit prohibitions override positive permissions 

We note that there is a risk, to be avoided, that the language is so closely 
modelled on existing access control definition languages that it biases the 



 42 

designer towards using access control as a solution, without considering other 
solutions such as encryption. 

5.5 Risk analysis 

Risk analysis, as represented by a method such as Octave approach [1] comes into 
Baskerville's [6] category of mechanistic engineering methods. The advent of 
security requirements engineering brings us one stage closer to his aim of 
integrated design. However, there is no general agreement about how to integrate 
conventional risk analysis into the process, and this requires further research. 

Scalability 

It is remarkable how much space we have taken up in the exposition of the 
simplest possible case study. Do our proposals fail because they produce an 
unworkable volume of material? 

The size of security risk analysis documents is already notoriously huge, and we 
do not believe that we are proposing a large, if any, increase. What we are doing 
is making the problem more manageable by adding structure to it; it is clear 
whether, at any moment, one is doing security goal refinement, or realising the 
security requirements in a problem frame, or going beyond the scope of this paper 
into security design. 

We have not disposed of the scalability problem, but have made some 
contribution to breaking it into more manageable portions. 

6. Conclusions 

We announced three principles at the start of this paper: 

• The "what" of security requirements must be understood before the "how" is 
described. We have achieved this by defining and describing security goals 
and requirements, and showing their relationship to a software specification 
within the problem frames architecture. 

• Security cannot be considered as a feature of software alone; it is concerned 
with the prevention of harm in the real world. This has been achieved by 
making a clear distinction between system and software security 
requirements. 

• Security requirements can most usefully be defined by considering them at the 
same level as functional requirements. We have proposed, and worked 
through the implications of, the definition of security requirements as 
constraints on system functions.  

Advantages of our approach are: 

• Security requirements are naturally integrated with the system's functional 
requirements and constraints derived from other sources. An integrated 
development is possible. 
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• This has the consequence that interactions and trade-offs between security and 
other quality requirements can be analysed. For example, interactions and  
trade-offs between them can be considered in terms of the different required 
constraints on the same functional requirements. 

We claim that this framework will help requirements and security engineers to 
understand the place of the various synthetic and analytical activities that have 
previously been carried out in isolation. The framework has raised a number of 
issues, mentioned in the discussion, but we believe that it provides a way forward 
to effective co-operation between the two disciplines of requirements and 
security. 

We have no illusions that this paper does more than open up the subject of 
security requirements, so as to make further progress. However, by concentrating 
on defining the core security requirements artefacts, we have avoided introducing 
unnecessary alligators into our swamp, and can point to a pathway out of it. 
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